{"title":"拓扑材料表面分析","authors":"Taro Kimura","doi":"10.5772/INTECHOPEN.74934","DOIUrl":null,"url":null,"abstract":"We provide a systematic analysis of the boundary condition for the edge state, which is a ubiquitous feature in topological phases of matter. We show how to characterize the boundary condition, and how the edge state spectrum depends on it, with several examples, including 2d topological insulator and 3d Weyl semimetal. We also demonstrate the edge-of-edge state localized at the intersection of boundaries.","PeriodicalId":224264,"journal":{"name":"Heterojunctions and Nanostructures","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Topological Material Surfaces\",\"authors\":\"Taro Kimura\",\"doi\":\"10.5772/INTECHOPEN.74934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a systematic analysis of the boundary condition for the edge state, which is a ubiquitous feature in topological phases of matter. We show how to characterize the boundary condition, and how the edge state spectrum depends on it, with several examples, including 2d topological insulator and 3d Weyl semimetal. We also demonstrate the edge-of-edge state localized at the intersection of boundaries.\",\"PeriodicalId\":224264,\"journal\":{\"name\":\"Heterojunctions and Nanostructures\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heterojunctions and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.74934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterojunctions and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.74934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We provide a systematic analysis of the boundary condition for the edge state, which is a ubiquitous feature in topological phases of matter. We show how to characterize the boundary condition, and how the edge state spectrum depends on it, with several examples, including 2d topological insulator and 3d Weyl semimetal. We also demonstrate the edge-of-edge state localized at the intersection of boundaries.