{"title":"用于多标准应用的无电感1-10.5 GHz宽带LNA","authors":"S. Hampel, O. Schmitz, M. Tiebout, I. Rolfes","doi":"10.1109/ASSCC.2009.5357261","DOIUrl":null,"url":null,"abstract":"This article presents the design of a fully integrated inductorless LNA for wireless applications including WLAN, Bluetooth and UWB. The circuit was fabricated in 65nm CMOS technology and operates at a supply voltage of 1.2 V. The two-stage design is comprised of a current reuse shunt feedback input stage followed by a differential pair, incorporating an active inductor load to compensate the gain roll-off. The circuit exhibits a peak gain of 16.5 dB, while the 3-dB bandwidth as well as the input and output matching of better than −10 dB range from 1–10.5 GHz. The noise figure is kept below 5 dB within this frequency range, offering a minimum noise figure of 3.9 dB. The linearity in terms of P1dB, out and oIP3 offers nearly constant behavior with −5 dBm and 3 dBm respectively. The active area takes up only 0.021 mm2.","PeriodicalId":263023,"journal":{"name":"2009 IEEE Asian Solid-State Circuits Conference","volume":"516 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Inductorless 1–10.5 GHz wideband LNA for multistandard applications\",\"authors\":\"S. Hampel, O. Schmitz, M. Tiebout, I. Rolfes\",\"doi\":\"10.1109/ASSCC.2009.5357261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the design of a fully integrated inductorless LNA for wireless applications including WLAN, Bluetooth and UWB. The circuit was fabricated in 65nm CMOS technology and operates at a supply voltage of 1.2 V. The two-stage design is comprised of a current reuse shunt feedback input stage followed by a differential pair, incorporating an active inductor load to compensate the gain roll-off. The circuit exhibits a peak gain of 16.5 dB, while the 3-dB bandwidth as well as the input and output matching of better than −10 dB range from 1–10.5 GHz. The noise figure is kept below 5 dB within this frequency range, offering a minimum noise figure of 3.9 dB. The linearity in terms of P1dB, out and oIP3 offers nearly constant behavior with −5 dBm and 3 dBm respectively. The active area takes up only 0.021 mm2.\",\"PeriodicalId\":263023,\"journal\":{\"name\":\"2009 IEEE Asian Solid-State Circuits Conference\",\"volume\":\"516 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Asian Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2009.5357261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2009.5357261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inductorless 1–10.5 GHz wideband LNA for multistandard applications
This article presents the design of a fully integrated inductorless LNA for wireless applications including WLAN, Bluetooth and UWB. The circuit was fabricated in 65nm CMOS technology and operates at a supply voltage of 1.2 V. The two-stage design is comprised of a current reuse shunt feedback input stage followed by a differential pair, incorporating an active inductor load to compensate the gain roll-off. The circuit exhibits a peak gain of 16.5 dB, while the 3-dB bandwidth as well as the input and output matching of better than −10 dB range from 1–10.5 GHz. The noise figure is kept below 5 dB within this frequency range, offering a minimum noise figure of 3.9 dB. The linearity in terms of P1dB, out and oIP3 offers nearly constant behavior with −5 dBm and 3 dBm respectively. The active area takes up only 0.021 mm2.