一种用于高速电机转子的低功耗近距离通信数据采集系统

Mariano Nerone, Igor Valic, Matteo Zauli, N. Matteazzi, L. Marchi
{"title":"一种用于高速电机转子的低功耗近距离通信数据采集系统","authors":"Mariano Nerone, Igor Valic, Matteo Zauli, N. Matteazzi, L. Marchi","doi":"10.1109/MetroAutomotive57488.2023.10219136","DOIUrl":null,"url":null,"abstract":"Temperature monitoring is a key aspect in the field of electric motors. In high performance applications the rotor of a motor can reach very high temperatures leading to an over-heating of the rotor magnets, which can consequently lead to a demagnetization or to stator windings deterioration. These kinds of issues can severely impact the lifetime of an electric motor, and it is for such matter that is really important to monitor rotor temperatures: this way the motor can always be operated in a safe state, minimizing unexpected faults. Since minor errors in the simulation phase can lead to severe faults it is important to trust the simulations implemented, and this can be done by monitoring real data on the field. Such data can also be used to improve the simulation tools used to validate the motor design phase.The measurement system proposed in this paper is meant to be installed inside the motor rotor and can measure up to 8 thermocouples (type K, J, T, N, S, E, B and R) with a sampling frequency of 8 samples per second and an accuracy of ±2°C for temperatures between 0°C and 250°C. The board placed inside the rotor is powered by means of NFC energy harvest. The NFC protocol is also used to transfer data to a board placed on the motor stator.","PeriodicalId":115847,"journal":{"name":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low power NFC data over power acquisition system for high speed Electric Motor Rotors\",\"authors\":\"Mariano Nerone, Igor Valic, Matteo Zauli, N. Matteazzi, L. Marchi\",\"doi\":\"10.1109/MetroAutomotive57488.2023.10219136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature monitoring is a key aspect in the field of electric motors. In high performance applications the rotor of a motor can reach very high temperatures leading to an over-heating of the rotor magnets, which can consequently lead to a demagnetization or to stator windings deterioration. These kinds of issues can severely impact the lifetime of an electric motor, and it is for such matter that is really important to monitor rotor temperatures: this way the motor can always be operated in a safe state, minimizing unexpected faults. Since minor errors in the simulation phase can lead to severe faults it is important to trust the simulations implemented, and this can be done by monitoring real data on the field. Such data can also be used to improve the simulation tools used to validate the motor design phase.The measurement system proposed in this paper is meant to be installed inside the motor rotor and can measure up to 8 thermocouples (type K, J, T, N, S, E, B and R) with a sampling frequency of 8 samples per second and an accuracy of ±2°C for temperatures between 0°C and 250°C. The board placed inside the rotor is powered by means of NFC energy harvest. The NFC protocol is also used to transfer data to a board placed on the motor stator.\",\"PeriodicalId\":115847,\"journal\":{\"name\":\"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAutomotive57488.2023.10219136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAutomotive57488.2023.10219136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

温度监测是电机领域的一个重要方面。在高性能应用中,电机的转子可以达到非常高的温度,导致转子磁体过热,从而导致退磁或定子绕组恶化。这些问题会严重影响电机的使用寿命,因此监测转子温度非常重要:这样电机就可以始终在安全状态下运行,最大限度地减少意外故障。由于模拟阶段的小错误可能导致严重的故障,因此信任所实现的模拟非常重要,这可以通过监测现场的真实数据来实现。这些数据也可用于改进用于验证电机设计阶段的仿真工具。本文提出的测量系统旨在安装在电机转子内部,可测量多达8个热电偶(K, J, T, N, S, E, B和R型),采样频率为每秒8个样本,精度为±2°C,温度为0°C至250°C。放置在转子内部的电路板是通过近场通信能量收集的方式供电的。NFC协议还用于将数据传输到放置在电机定子上的电路板上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A low power NFC data over power acquisition system for high speed Electric Motor Rotors
Temperature monitoring is a key aspect in the field of electric motors. In high performance applications the rotor of a motor can reach very high temperatures leading to an over-heating of the rotor magnets, which can consequently lead to a demagnetization or to stator windings deterioration. These kinds of issues can severely impact the lifetime of an electric motor, and it is for such matter that is really important to monitor rotor temperatures: this way the motor can always be operated in a safe state, minimizing unexpected faults. Since minor errors in the simulation phase can lead to severe faults it is important to trust the simulations implemented, and this can be done by monitoring real data on the field. Such data can also be used to improve the simulation tools used to validate the motor design phase.The measurement system proposed in this paper is meant to be installed inside the motor rotor and can measure up to 8 thermocouples (type K, J, T, N, S, E, B and R) with a sampling frequency of 8 samples per second and an accuracy of ±2°C for temperatures between 0°C and 250°C. The board placed inside the rotor is powered by means of NFC energy harvest. The NFC protocol is also used to transfer data to a board placed on the motor stator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A strain-based estimation of tire-road forces through a supervised learning approach Anti-Interference Algorithm of Environment-Aware Millimeter Wave Radar An Adaptive TinyML Unsupervised Online Learning Algorithm for Driver Behavior Analysis Research on Automatic Calibration Method of Transmission Loss for Millimeter-Wave Radar Testing System in Intelligent Vehicle Exponential degradation model for Remaining Useful Life estimation of electrolytic capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1