基于mfccc均值及其衍生物的语音情感识别轻量人工神经网络

Panuwit Nantasri, E. Phaisangittisagul, Jessada Karnjana, Surasak Boonkla, S. Keerativittayanun, A. Rugchatjaroen, Sasiporn Usanavasin, T. Shinozaki
{"title":"基于mfccc均值及其衍生物的语音情感识别轻量人工神经网络","authors":"Panuwit Nantasri, E. Phaisangittisagul, Jessada Karnjana, Surasak Boonkla, S. Keerativittayanun, A. Rugchatjaroen, Sasiporn Usanavasin, T. Shinozaki","doi":"10.1109/ecti-con49241.2020.9158221","DOIUrl":null,"url":null,"abstract":"Due to the limitation of memory and computational power in the embedded system, this work proposes a novel approach to create a useful set of features for improving speech emotion recognition (SER) system. Typically, Mel Frequency Cepstral Coefficients ( MFCCs) i s w idely u sed a s f eatures of SER system. In order to reduce the number of parameters and computational burden in SER applications, average values of MFCCs that are concatenated with delta and delta-delta coefficients a re u sed a s t he f eatures f or a n a rtificial neural network model (ANN) in classification. The results demonstrate that the use of the proposed features are comparable to the state-of-the-art methods with 87.8% for the EmoDB database and 82.3% for the RAVDESS database, respectively. Moreover, the number of parameters used in the classification m odel has been significantly reduced.","PeriodicalId":371552,"journal":{"name":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A Light-Weight Artificial Neural Network for Speech Emotion Recognition using Average Values of MFCCs and Their Derivatives\",\"authors\":\"Panuwit Nantasri, E. Phaisangittisagul, Jessada Karnjana, Surasak Boonkla, S. Keerativittayanun, A. Rugchatjaroen, Sasiporn Usanavasin, T. Shinozaki\",\"doi\":\"10.1109/ecti-con49241.2020.9158221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the limitation of memory and computational power in the embedded system, this work proposes a novel approach to create a useful set of features for improving speech emotion recognition (SER) system. Typically, Mel Frequency Cepstral Coefficients ( MFCCs) i s w idely u sed a s f eatures of SER system. In order to reduce the number of parameters and computational burden in SER applications, average values of MFCCs that are concatenated with delta and delta-delta coefficients a re u sed a s t he f eatures f or a n a rtificial neural network model (ANN) in classification. The results demonstrate that the use of the proposed features are comparable to the state-of-the-art methods with 87.8% for the EmoDB database and 82.3% for the RAVDESS database, respectively. Moreover, the number of parameters used in the classification m odel has been significantly reduced.\",\"PeriodicalId\":371552,\"journal\":{\"name\":\"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecti-con49241.2020.9158221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecti-con49241.2020.9158221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

由于嵌入式系统的内存和计算能力的限制,本工作提出了一种新的方法来创建一组有用的特征来改进语音情感识别(SER)系统。通常,Mel频率倒谱系数(mfccc)被广泛用于SER系统的特征。为了减少SER应用中参数的数量和计算量,在人工神经网络模型(ANN)中,使用与δ和δ - δ系数相连接的mfc的平均值作为分类的特征。结果表明,所提出的特征的使用与最先进的方法相当,EmoDB数据库的使用率为87.8%,RAVDESS数据库的使用率为82.3%。此外,分类模型中使用的参数数量也显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Light-Weight Artificial Neural Network for Speech Emotion Recognition using Average Values of MFCCs and Their Derivatives
Due to the limitation of memory and computational power in the embedded system, this work proposes a novel approach to create a useful set of features for improving speech emotion recognition (SER) system. Typically, Mel Frequency Cepstral Coefficients ( MFCCs) i s w idely u sed a s f eatures of SER system. In order to reduce the number of parameters and computational burden in SER applications, average values of MFCCs that are concatenated with delta and delta-delta coefficients a re u sed a s t he f eatures f or a n a rtificial neural network model (ANN) in classification. The results demonstrate that the use of the proposed features are comparable to the state-of-the-art methods with 87.8% for the EmoDB database and 82.3% for the RAVDESS database, respectively. Moreover, the number of parameters used in the classification m odel has been significantly reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Simple Tunable Biquadratic Digital Bandpass Filter Design for Spectrum Sensing in Cognitive Radio ElectricVehicle Simulator Using DC Drives Comparison of Machine Learning Algorithm’s on Self-Driving Car Navigation using Nvidia Jetson Nano Enhancing CNN Based Knowledge Graph Embedding Algorithms Using Auxiliary Vectors: A Case Study of Wordnet Knowledge Graph A Study of Radiated EMI Predictions from Measured Common-mode Currents for Switching Power Supplies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1