{"title":"利用采出水控制非均质CO2储层压力传播","authors":"H. Vosper, J. White, C. Gent","doi":"10.3997/2214-4609.201802968","DOIUrl":null,"url":null,"abstract":"Injection of CO2 into a reservoir increases the pressure above initial values, resulting in overpressure of a hydrostatically charged formation. Without careful monitoring and management, excessive pressure can lead to a number of serious complications for a CO2 storage operations. Using numerical simulations with four distinct porosity/permeability distributions to represent reservoirs with random and structured heterogeneity. We initially consider the impact heterogeneity has on pressure propagation from a CO2 injection well; in particular the effect of channels on the lateral extent of the region of increased pressure. Subsequently, we investigate how heterogeneity influences the efficacy of water production as a pressure management tool and the optimisation of well positioning. For a channelized reservoir the most effective production well, which reduces the area of high pressure by up to 88%. Even in a randomised reservoir with no structured distribution of porosity and permeability, water production can still reduce the high pressure footprint by 60-88%. The location of the production well relative to the heterogeneity has been shown have a significant effect. The most effective production well location may not always be close to the target, but should be connected to the target by relatively high permeability pathways.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control Of Pressure Propagation In A Heterogeneous CO2 Storage Reservoir Using Water Production\",\"authors\":\"H. Vosper, J. White, C. Gent\",\"doi\":\"10.3997/2214-4609.201802968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Injection of CO2 into a reservoir increases the pressure above initial values, resulting in overpressure of a hydrostatically charged formation. Without careful monitoring and management, excessive pressure can lead to a number of serious complications for a CO2 storage operations. Using numerical simulations with four distinct porosity/permeability distributions to represent reservoirs with random and structured heterogeneity. We initially consider the impact heterogeneity has on pressure propagation from a CO2 injection well; in particular the effect of channels on the lateral extent of the region of increased pressure. Subsequently, we investigate how heterogeneity influences the efficacy of water production as a pressure management tool and the optimisation of well positioning. For a channelized reservoir the most effective production well, which reduces the area of high pressure by up to 88%. Even in a randomised reservoir with no structured distribution of porosity and permeability, water production can still reduce the high pressure footprint by 60-88%. The location of the production well relative to the heterogeneity has been shown have a significant effect. The most effective production well location may not always be close to the target, but should be connected to the target by relatively high permeability pathways.\",\"PeriodicalId\":254996,\"journal\":{\"name\":\"Fifth CO2 Geological Storage Workshop\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth CO2 Geological Storage Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201802968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth CO2 Geological Storage Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201802968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control Of Pressure Propagation In A Heterogeneous CO2 Storage Reservoir Using Water Production
Injection of CO2 into a reservoir increases the pressure above initial values, resulting in overpressure of a hydrostatically charged formation. Without careful monitoring and management, excessive pressure can lead to a number of serious complications for a CO2 storage operations. Using numerical simulations with four distinct porosity/permeability distributions to represent reservoirs with random and structured heterogeneity. We initially consider the impact heterogeneity has on pressure propagation from a CO2 injection well; in particular the effect of channels on the lateral extent of the region of increased pressure. Subsequently, we investigate how heterogeneity influences the efficacy of water production as a pressure management tool and the optimisation of well positioning. For a channelized reservoir the most effective production well, which reduces the area of high pressure by up to 88%. Even in a randomised reservoir with no structured distribution of porosity and permeability, water production can still reduce the high pressure footprint by 60-88%. The location of the production well relative to the heterogeneity has been shown have a significant effect. The most effective production well location may not always be close to the target, but should be connected to the target by relatively high permeability pathways.