{"title":"基于微纹理分析的单幅人脸欺骗检测","authors":"Jukka Määttä, A. Hadid, M. Pietikäinen","doi":"10.1109/IJCB.2011.6117510","DOIUrl":null,"url":null,"abstract":"Current face biometric systems are vulnerable to spoofing attacks. A spoofing attack occurs when a person tries to masquerade as someone else by falsifying data and thereby gaining illegitimate access. Inspired by image quality assessment, characterization of printing artifacts, and differences in light reflection, we propose to approach the problem of spoofing detection from texture analysis point of view. Indeed, face prints usually contain printing quality defects that can be well detected using texture features. Hence, we present a novel approach based on analyzing facial image textures for detecting whether there is a live person in front of the camera or a face print. The proposed approach analyzes the texture of the facial images using multi-scale local binary patterns (LBP). Compared to many previous works, our proposed approach is robust, computationally fast and does not require user-cooperation. In addition, the texture features that are used for spoofing detection can also be used for face recognition. This provides a unique feature space for coupling spoofing detection and face recognition. Extensive experimental analysis on a publicly available database showed excellent results compared to existing works.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"629","resultStr":"{\"title\":\"Face spoofing detection from single images using micro-texture analysis\",\"authors\":\"Jukka Määttä, A. Hadid, M. Pietikäinen\",\"doi\":\"10.1109/IJCB.2011.6117510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current face biometric systems are vulnerable to spoofing attacks. A spoofing attack occurs when a person tries to masquerade as someone else by falsifying data and thereby gaining illegitimate access. Inspired by image quality assessment, characterization of printing artifacts, and differences in light reflection, we propose to approach the problem of spoofing detection from texture analysis point of view. Indeed, face prints usually contain printing quality defects that can be well detected using texture features. Hence, we present a novel approach based on analyzing facial image textures for detecting whether there is a live person in front of the camera or a face print. The proposed approach analyzes the texture of the facial images using multi-scale local binary patterns (LBP). Compared to many previous works, our proposed approach is robust, computationally fast and does not require user-cooperation. In addition, the texture features that are used for spoofing detection can also be used for face recognition. This provides a unique feature space for coupling spoofing detection and face recognition. Extensive experimental analysis on a publicly available database showed excellent results compared to existing works.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"629\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Face spoofing detection from single images using micro-texture analysis
Current face biometric systems are vulnerable to spoofing attacks. A spoofing attack occurs when a person tries to masquerade as someone else by falsifying data and thereby gaining illegitimate access. Inspired by image quality assessment, characterization of printing artifacts, and differences in light reflection, we propose to approach the problem of spoofing detection from texture analysis point of view. Indeed, face prints usually contain printing quality defects that can be well detected using texture features. Hence, we present a novel approach based on analyzing facial image textures for detecting whether there is a live person in front of the camera or a face print. The proposed approach analyzes the texture of the facial images using multi-scale local binary patterns (LBP). Compared to many previous works, our proposed approach is robust, computationally fast and does not require user-cooperation. In addition, the texture features that are used for spoofing detection can also be used for face recognition. This provides a unique feature space for coupling spoofing detection and face recognition. Extensive experimental analysis on a publicly available database showed excellent results compared to existing works.