{"title":"服务机器人路径规划","authors":"Ruining Li","doi":"10.1109/WCMEIM56910.2022.10021507","DOIUrl":null,"url":null,"abstract":"Path Planning is an essential aspect of the navigation of mobile service robots. The problem of path planning includes low time efficiency, large memory cost, local optimum, and slow speed in finding the global optimum. This paper reviews three main path planning algorithms and their extensions for the service robots. The first one is Ant Colony Optimization (ACO). The second algorithm is Particle Swarm Optimization (PSO) and some hybrid PSO-related algorithms. The third one is a conventional algorithm named Rapidly Exploring Random Tree (RRT).","PeriodicalId":202270,"journal":{"name":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path Planning for Service Robots\",\"authors\":\"Ruining Li\",\"doi\":\"10.1109/WCMEIM56910.2022.10021507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Path Planning is an essential aspect of the navigation of mobile service robots. The problem of path planning includes low time efficiency, large memory cost, local optimum, and slow speed in finding the global optimum. This paper reviews three main path planning algorithms and their extensions for the service robots. The first one is Ant Colony Optimization (ACO). The second algorithm is Particle Swarm Optimization (PSO) and some hybrid PSO-related algorithms. The third one is a conventional algorithm named Rapidly Exploring Random Tree (RRT).\",\"PeriodicalId\":202270,\"journal\":{\"name\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCMEIM56910.2022.10021507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCMEIM56910.2022.10021507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

路径规划是移动服务机器人导航的一个重要方面。路径规划存在时间效率低、内存占用大、局部最优、全局最优查找速度慢等问题。本文综述了服务机器人的三种主要路径规划算法及其扩展。首先是蚁群优化算法(Ant Colony Optimization, ACO)。第二种算法是粒子群算法(PSO)及其相关的混合算法。第三种是传统的快速探索随机树(RRT)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Path Planning for Service Robots
Path Planning is an essential aspect of the navigation of mobile service robots. The problem of path planning includes low time efficiency, large memory cost, local optimum, and slow speed in finding the global optimum. This paper reviews three main path planning algorithms and their extensions for the service robots. The first one is Ant Colony Optimization (ACO). The second algorithm is Particle Swarm Optimization (PSO) and some hybrid PSO-related algorithms. The third one is a conventional algorithm named Rapidly Exploring Random Tree (RRT).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Analysis of a Novel Soft Actuator with High Contraction Ratio Based on Nested Structure Design and Verification of Thermal Balance System for Electric Drive Transmission in Urban Public Transit Design and Experiment of a Novel Manipulator for Autonomous Harvesting Tomato Clusters Research on Young's Modulus Prediction Model of Particle Reinforced Composites The Liquid Rocket Engine Experiment Data Quality Improvement Based on 3σ-LMBP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1