基于平均模板和局部稳定加权动态时间翘曲的单模板在线签名验证

Manabu Okawa
{"title":"基于平均模板和局部稳定加权动态时间翘曲的单模板在线签名验证","authors":"Manabu Okawa","doi":"10.1109/IWCIA47330.2019.8955083","DOIUrl":null,"url":null,"abstract":"This study proposes a novel single-template strategy that uses mean templates and local stability-weighted dynamic time warping (LS-DTW) as a means of improving the speed and accuracy of online signature verification. Specifically, we adopt a recent time-series averaging method, Euclidean barycenter-based DTW barycenter averaging, to obtain effective mean templates while preserving intra-user variability among reference samples. Then, we estimate the local stability of the mean template set using multiple matching points that detect significant distorted trajectories in the warping paths of DTW. Subsequently, to boost discriminative power in the verification phase, we use the LS-DTW distances that incorporate the local stability sequence as the weights for the cost function of DTW warping between the set of mean templates and a test sample. Experimental results confirm the effectiveness of the proposed method using a common SVC2004 Task2 dataset.","PeriodicalId":139434,"journal":{"name":"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"603 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Online Signature Verification Using a Single-template Strategy with Mean Templates and Local Stability-weighted Dynamic Time Warping\",\"authors\":\"Manabu Okawa\",\"doi\":\"10.1109/IWCIA47330.2019.8955083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a novel single-template strategy that uses mean templates and local stability-weighted dynamic time warping (LS-DTW) as a means of improving the speed and accuracy of online signature verification. Specifically, we adopt a recent time-series averaging method, Euclidean barycenter-based DTW barycenter averaging, to obtain effective mean templates while preserving intra-user variability among reference samples. Then, we estimate the local stability of the mean template set using multiple matching points that detect significant distorted trajectories in the warping paths of DTW. Subsequently, to boost discriminative power in the verification phase, we use the LS-DTW distances that incorporate the local stability sequence as the weights for the cost function of DTW warping between the set of mean templates and a test sample. Experimental results confirm the effectiveness of the proposed method using a common SVC2004 Task2 dataset.\",\"PeriodicalId\":139434,\"journal\":{\"name\":\"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"603 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA47330.2019.8955083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA47330.2019.8955083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的单模板策略,该策略使用平均模板和局部稳定性加权动态时间规整(LS-DTW)作为提高在线签名验证速度和准确性的手段。具体来说,我们采用了一种最新的时间序列平均方法,即基于欧几里得重心的DTW重心平均,以获得有效的均值模板,同时保留参考样本之间的用户内部可变性。然后,我们使用多个匹配点来估计平均模板集的局部稳定性,这些匹配点检测到DTW翘曲路径中的显著扭曲轨迹。随后,为了提高验证阶段的判别能力,我们使用包含局部稳定序列的LS-DTW距离作为均值模板集和测试样本之间DTW扭曲代价函数的权重。实验结果验证了该方法在SVC2004 Task2通用数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Signature Verification Using a Single-template Strategy with Mean Templates and Local Stability-weighted Dynamic Time Warping
This study proposes a novel single-template strategy that uses mean templates and local stability-weighted dynamic time warping (LS-DTW) as a means of improving the speed and accuracy of online signature verification. Specifically, we adopt a recent time-series averaging method, Euclidean barycenter-based DTW barycenter averaging, to obtain effective mean templates while preserving intra-user variability among reference samples. Then, we estimate the local stability of the mean template set using multiple matching points that detect significant distorted trajectories in the warping paths of DTW. Subsequently, to boost discriminative power in the verification phase, we use the LS-DTW distances that incorporate the local stability sequence as the weights for the cost function of DTW warping between the set of mean templates and a test sample. Experimental results confirm the effectiveness of the proposed method using a common SVC2004 Task2 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acquiring Multiagent Cooperative Behavior in the RoboCup Soccer Simulation Neurosynaptic Computational Elements for Adaptive Transient Synchrony: Biophysical Accuracy versus Hardware Complexity [Front matter] Multi-Channel MHLF: LSTM-FCN using MACD-Histogram with Multi-Channel Input for Time Series Classification Using Label Information in a Genetic Programming Based Method for Acquiring Block Preserving Outerplanar Graph Patterns with Wildcards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1