基于深度q -网络的智慧城市ATM机最优现金充值规划

Mohammadhossein Kiyaei, Farkhondeh Kiaee
{"title":"基于深度q -网络的智慧城市ATM机最优现金充值规划","authors":"Mohammadhossein Kiyaei, Farkhondeh Kiaee","doi":"10.1109/CSICC52343.2021.9420561","DOIUrl":null,"url":null,"abstract":"ATMs are no longer just machines, these connected devices are smart, intelligent things in the Internet of Things (IoT). Access to cash for many in society is remaining essential during the current COVID-19 lock-down around the globe. A cash inventory management system is necessary to decide whether ATM should be replenished on each day of the week. In this paper, we study the real-time cash replenishment planning problem under outflow uncertainty where the fee of the security companies grows if the replenishment ends up falling on a weekends/holidays. Our model is based by the Double Deep Q-Network (DQN) algorithm which combines popular Q-learning with a deep neural network. The proposed method is used to control replenishment operation in order to minimize replenishment cost where the cash demand changes dynamically at each day. Experiment results show that our proposed method can work effectively on the real outflow time-series and it is able to reduce the ATM operational cost compared with the other state-of-the-art cash demand prediction schemes.","PeriodicalId":374593,"journal":{"name":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal ATM Cash Replenishment Planning in a Smart City using Deep Q-Network\",\"authors\":\"Mohammadhossein Kiyaei, Farkhondeh Kiaee\",\"doi\":\"10.1109/CSICC52343.2021.9420561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ATMs are no longer just machines, these connected devices are smart, intelligent things in the Internet of Things (IoT). Access to cash for many in society is remaining essential during the current COVID-19 lock-down around the globe. A cash inventory management system is necessary to decide whether ATM should be replenished on each day of the week. In this paper, we study the real-time cash replenishment planning problem under outflow uncertainty where the fee of the security companies grows if the replenishment ends up falling on a weekends/holidays. Our model is based by the Double Deep Q-Network (DQN) algorithm which combines popular Q-learning with a deep neural network. The proposed method is used to control replenishment operation in order to minimize replenishment cost where the cash demand changes dynamically at each day. Experiment results show that our proposed method can work effectively on the real outflow time-series and it is able to reduce the ATM operational cost compared with the other state-of-the-art cash demand prediction schemes.\",\"PeriodicalId\":374593,\"journal\":{\"name\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICC52343.2021.9420561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC52343.2021.9420561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自动取款机不再仅仅是机器,这些连接的设备是物联网(IoT)中的智能设备。在当前全球COVID-19封锁期间,社会上许多人获得现金仍然至关重要。一个现金库存管理系统是必要的,以决定是否应该在每周的每一天补充ATM机。本文研究了资金流出不确定情况下证券公司的实时现金补充计划问题,当资金补充在周末或节假日结束时,证券公司的费用会增加。我们的模型基于双深度Q-Network (DQN)算法,该算法将流行的q -学习与深度神经网络相结合。在每天现金需求动态变化的情况下,采用该方法控制补货操作,使补货成本最小化。实验结果表明,该方法能够有效地处理真实流出时间序列,并且与其他先进的现金需求预测方案相比,能够降低ATM的运行成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal ATM Cash Replenishment Planning in a Smart City using Deep Q-Network
ATMs are no longer just machines, these connected devices are smart, intelligent things in the Internet of Things (IoT). Access to cash for many in society is remaining essential during the current COVID-19 lock-down around the globe. A cash inventory management system is necessary to decide whether ATM should be replenished on each day of the week. In this paper, we study the real-time cash replenishment planning problem under outflow uncertainty where the fee of the security companies grows if the replenishment ends up falling on a weekends/holidays. Our model is based by the Double Deep Q-Network (DQN) algorithm which combines popular Q-learning with a deep neural network. The proposed method is used to control replenishment operation in order to minimize replenishment cost where the cash demand changes dynamically at each day. Experiment results show that our proposed method can work effectively on the real outflow time-series and it is able to reduce the ATM operational cost compared with the other state-of-the-art cash demand prediction schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for End-to-End ASR to Deal with Low-Resource Problem in Persian Language An SDN-based Firewall for Networks with Varying Security Requirements A Face-Mask Detection Approach based on YOLO Applied for a New Collected Dataset Telegram group recommendation based on users' migration Design of an IoT-based Flood Early Detection System using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1