热元件的设计、制造和测试,并将其集成到微流体装置中

T. Smekal, D. Rhine, D. Weston, P. Grodzinski
{"title":"热元件的设计、制造和测试,并将其集成到微流体装置中","authors":"T. Smekal, D. Rhine, D. Weston, P. Grodzinski","doi":"10.1109/ITHERM.2002.1012572","DOIUrl":null,"url":null,"abstract":"We discuss the design, integration and testing of thermal components in a microfluidic device designed for on-chip genetic sample preparation. A typical microdevice must perform several operations to be capable of analyzing a sample of body fluid (blood, urine, saliva), extracting DNA from concentrated cells, hybridization, purifying and amplifying DNA, and finally detecting DNA fragments of interest. Reduction of the sample volume down to a few /spl mu/Ls and improvement of the ramp times between temperature steps makes micro-PCR devices desirable. Thermal components such as heaters and resistive thermal devices (RTDs) are fabricated as an integral part of a complete genetic sample preparation micro-system. The ability to precisely control the temperature is a critical component of most microfluidic devices intended for on-chip genetic sample preparation Devices were fabricated and demonstrated a temperature variation of /spl sim/1/spl deg/C over the entire sample volume. The design of a device, including chamber dimensions, and placement of the heating and cooling elements is presented. The results of temperature cycling experiments are shown. We have measured a heating rate of /spl sim/2.4/spl deg/C/s and a cooling rate of /spl sim/2.0/spl deg/C/s for devices tested under active heating/cooling control. A brief overview of relevant microfabrication methods is also presented.","PeriodicalId":299933,"journal":{"name":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Design, fabrication and testing of thermal components and their integration into a microfluidic device\",\"authors\":\"T. Smekal, D. Rhine, D. Weston, P. Grodzinski\",\"doi\":\"10.1109/ITHERM.2002.1012572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the design, integration and testing of thermal components in a microfluidic device designed for on-chip genetic sample preparation. A typical microdevice must perform several operations to be capable of analyzing a sample of body fluid (blood, urine, saliva), extracting DNA from concentrated cells, hybridization, purifying and amplifying DNA, and finally detecting DNA fragments of interest. Reduction of the sample volume down to a few /spl mu/Ls and improvement of the ramp times between temperature steps makes micro-PCR devices desirable. Thermal components such as heaters and resistive thermal devices (RTDs) are fabricated as an integral part of a complete genetic sample preparation micro-system. The ability to precisely control the temperature is a critical component of most microfluidic devices intended for on-chip genetic sample preparation Devices were fabricated and demonstrated a temperature variation of /spl sim/1/spl deg/C over the entire sample volume. The design of a device, including chamber dimensions, and placement of the heating and cooling elements is presented. The results of temperature cycling experiments are shown. We have measured a heating rate of /spl sim/2.4/spl deg/C/s and a cooling rate of /spl sim/2.0/spl deg/C/s for devices tested under active heating/cooling control. A brief overview of relevant microfabrication methods is also presented.\",\"PeriodicalId\":299933,\"journal\":{\"name\":\"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2002.1012572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2002.1012572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们讨论了设计用于芯片上遗传样品制备的微流控装置中热元件的设计、集成和测试。一个典型的微型设备必须执行几个操作才能分析体液样本(血液、尿液、唾液),从浓缩的细胞中提取DNA,杂交,纯化和扩增DNA,最后检测感兴趣的DNA片段。将样品体积减少到几/spl mu/ l,并改善温度步骤之间的斜坡时间,使微pcr装置成为理想的选择。热元件,如加热器和电阻热器件(rtd)被制造作为一个完整的遗传样品制备微系统的组成部分。精确控制温度的能力是用于芯片上遗传样品制备的大多数微流控装置的关键组成部分,该装置被制造并证明了整个样品体积的温度变化为/spl sim/1/spl℃。介绍了一种装置的设计,包括室的尺寸,以及加热和冷却元件的位置。给出了温度循环实验的结果。我们测量了在主动加热/冷却控制下测试的设备的加热速率为/spl sim/2.4/spl°/C/s,冷却速率为/spl sim/2.0/spl°/C/s。本文还简要介绍了相关的微加工方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design, fabrication and testing of thermal components and their integration into a microfluidic device
We discuss the design, integration and testing of thermal components in a microfluidic device designed for on-chip genetic sample preparation. A typical microdevice must perform several operations to be capable of analyzing a sample of body fluid (blood, urine, saliva), extracting DNA from concentrated cells, hybridization, purifying and amplifying DNA, and finally detecting DNA fragments of interest. Reduction of the sample volume down to a few /spl mu/Ls and improvement of the ramp times between temperature steps makes micro-PCR devices desirable. Thermal components such as heaters and resistive thermal devices (RTDs) are fabricated as an integral part of a complete genetic sample preparation micro-system. The ability to precisely control the temperature is a critical component of most microfluidic devices intended for on-chip genetic sample preparation Devices were fabricated and demonstrated a temperature variation of /spl sim/1/spl deg/C over the entire sample volume. The design of a device, including chamber dimensions, and placement of the heating and cooling elements is presented. The results of temperature cycling experiments are shown. We have measured a heating rate of /spl sim/2.4/spl deg/C/s and a cooling rate of /spl sim/2.0/spl deg/C/s for devices tested under active heating/cooling control. A brief overview of relevant microfabrication methods is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of lumped R/sub th/C/sub th/ and approximate steady-state methods for reducing transient analysis solution time Multistage thermoelectric micro coolers A new approach to the design of complex heat transfer systems: notebook-size computer design Multimedia thermal CAD system for electronics multilayer structures with compact cold plate Modeling superconformal electrodeposition in trenches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1