一种基于蚁群算法的SoC布局优化方法

Rong Luo, Peng Sun
{"title":"一种基于蚁群算法的SoC布局优化方法","authors":"Rong Luo, Peng Sun","doi":"10.1109/MWSCAS.2007.4488757","DOIUrl":null,"url":null,"abstract":"In this paper, we present an advanced placement which aims at both flattening the temperature and decreasing the area in SoC floorplanning. The placement process is ingeniously converted into a quasi TSP problem and is solved by ant colony optimization (ACO) algorithm. Compared to traditional algorithms based on O-tree and B*-tree optimization, our results show great improvement in calculating speed while promising satisfying accuracy.","PeriodicalId":256061,"journal":{"name":"2007 50th Midwest Symposium on Circuits and Systems","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An advanced placement method for SoC floorplanning based on ACO algorithm\",\"authors\":\"Rong Luo, Peng Sun\",\"doi\":\"10.1109/MWSCAS.2007.4488757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an advanced placement which aims at both flattening the temperature and decreasing the area in SoC floorplanning. The placement process is ingeniously converted into a quasi TSP problem and is solved by ant colony optimization (ACO) algorithm. Compared to traditional algorithms based on O-tree and B*-tree optimization, our results show great improvement in calculating speed while promising satisfying accuracy.\",\"PeriodicalId\":256061,\"journal\":{\"name\":\"2007 50th Midwest Symposium on Circuits and Systems\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 50th Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2007.4488757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 50th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2007.4488757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种先进的安置方案,旨在降低SoC地板规划中的温度和面积。该方法将布局过程巧妙地转化为一个准TSP问题,并采用蚁群优化算法求解。与传统的基于o树和B*树优化的算法相比,我们的结果在保证令人满意的精度的同时,在计算速度上有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An advanced placement method for SoC floorplanning based on ACO algorithm
In this paper, we present an advanced placement which aims at both flattening the temperature and decreasing the area in SoC floorplanning. The placement process is ingeniously converted into a quasi TSP problem and is solved by ant colony optimization (ACO) algorithm. Compared to traditional algorithms based on O-tree and B*-tree optimization, our results show great improvement in calculating speed while promising satisfying accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image coding based on regular cosine-modulated filter banks Low power interference-robust UWB Low Noise Amplifier in 0.18-μm CMOS technology Constraint-based verification of delta-sigma modulators using interval analysis Efficient simulation of jitter tolerance for all-digital data recovery circuits On the theoretical limits of noise-gain-mismatch tradeoff in the design of multi-stage cascaded transistor amplifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1