基于gpu加速的云数据中心虚拟基础设施分配算法

Lucas Leandro Nesi, M. A. Pillon, M. Assunção, G. Koslovski
{"title":"基于gpu加速的云数据中心虚拟基础设施分配算法","authors":"Lucas Leandro Nesi, M. A. Pillon, M. Assunção, G. Koslovski","doi":"10.1109/CCGRID.2018.00057","DOIUrl":null,"url":null,"abstract":"Allocating IT resources to Virtual Infrastructures (VIs) (i.e. groups of VMs, virtual switches, and their network interconnections) is an NP-hard problem. Most allocation algorithms designed to run on CPUs face scalability issues when considering current cloud data centers comprising thousands of servers. This work offers and evaluates a set of allocation algorithms refactored for Graphic Processing Units (GPUs). Experimental results demonstrate their ability to handle three large-scale data center topologies.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"GPU-Accelerated Algorithms for Allocating Virtual Infrastructure in Cloud Data Centers\",\"authors\":\"Lucas Leandro Nesi, M. A. Pillon, M. Assunção, G. Koslovski\",\"doi\":\"10.1109/CCGRID.2018.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Allocating IT resources to Virtual Infrastructures (VIs) (i.e. groups of VMs, virtual switches, and their network interconnections) is an NP-hard problem. Most allocation algorithms designed to run on CPUs face scalability issues when considering current cloud data centers comprising thousands of servers. This work offers and evaluates a set of allocation algorithms refactored for Graphic Processing Units (GPUs). Experimental results demonstrate their ability to handle three large-scale data center topologies.\",\"PeriodicalId\":321027,\"journal\":{\"name\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2018.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

将IT资源分配给虚拟基础设施(Virtual infrastructure, VIs)(即虚拟机组、虚拟交换机及其网络互连)是一个np难题。当考虑到当前包含数千台服务器的云数据中心时,大多数设计用于在cpu上运行的分配算法都面临可伸缩性问题。这项工作提供并评估了一组分配算法重构图形处理单元(gpu)。实验结果表明,该算法能够处理三种大型数据中心拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU-Accelerated Algorithms for Allocating Virtual Infrastructure in Cloud Data Centers
Allocating IT resources to Virtual Infrastructures (VIs) (i.e. groups of VMs, virtual switches, and their network interconnections) is an NP-hard problem. Most allocation algorithms designed to run on CPUs face scalability issues when considering current cloud data centers comprising thousands of servers. This work offers and evaluates a set of allocation algorithms refactored for Graphic Processing Units (GPUs). Experimental results demonstrate their ability to handle three large-scale data center topologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extreme-Scale Realistic Stencil Computations on Sunway TaihuLight with Ten Million Cores RideMatcher: Peer-to-Peer Matching of Passengers for Efficient Ridesharing Nitro: Network-Aware Virtual Machine Image Management in Geo-Distributed Clouds Improving Energy Efficiency of Database Clusters Through Prefetching and Caching Main-Memory Requirements of Big Data Applications on Commodity Server Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1