基于神经网络的电力系统应急行为识别

D. Novosel, R. King
{"title":"基于神经网络的电力系统应急行为识别","authors":"D. Novosel, R. King","doi":"10.1109/ANN.1991.213477","DOIUrl":null,"url":null,"abstract":"The authors discuss the use of supervised learning and associative memories in an application for protecting the power system during an emergency situation. Automatic devices based on artificial neural networks are proposed as an intelligent and fast tool to mitigate the consequences of the major disturbance in the power system, area that involves a lot of unsolved problems. To prove the concept, the artificial neural network was trained to perform generation rescheduling as a way to alleviate the line overloads. The IEEE-30 bus test system was used to demonstrate that a feedforward neural network with back propagation can detect the state of the power system by monitoring line flows from SCADA data and then, make recommended corrective actions.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identification of power system emergency actions using neural networks\",\"authors\":\"D. Novosel, R. King\",\"doi\":\"10.1109/ANN.1991.213477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors discuss the use of supervised learning and associative memories in an application for protecting the power system during an emergency situation. Automatic devices based on artificial neural networks are proposed as an intelligent and fast tool to mitigate the consequences of the major disturbance in the power system, area that involves a lot of unsolved problems. To prove the concept, the artificial neural network was trained to perform generation rescheduling as a way to alleviate the line overloads. The IEEE-30 bus test system was used to demonstrate that a feedforward neural network with back propagation can detect the state of the power system by monitoring line flows from SCADA data and then, make recommended corrective actions.<<ETX>>\",\"PeriodicalId\":119713,\"journal\":{\"name\":\"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1991.213477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

讨论了监督学习和联想记忆在紧急情况下保护电力系统中的应用。基于人工神经网络的自动装置作为一种智能、快速的工具被提出,以减轻电力系统中重大干扰的后果,这一领域涉及许多尚未解决的问题。为了证明这一概念,训练人工神经网络进行代重调度,以减轻线路过载。以IEEE-30总线测试系统为例,验证了一种反向传播的前馈神经网络可以通过SCADA数据监测线路流量,从而检测出电力系统的状态,并提出相应的纠正措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of power system emergency actions using neural networks
The authors discuss the use of supervised learning and associative memories in an application for protecting the power system during an emergency situation. Automatic devices based on artificial neural networks are proposed as an intelligent and fast tool to mitigate the consequences of the major disturbance in the power system, area that involves a lot of unsolved problems. To prove the concept, the artificial neural network was trained to perform generation rescheduling as a way to alleviate the line overloads. The IEEE-30 bus test system was used to demonstrate that a feedforward neural network with back propagation can detect the state of the power system by monitoring line flows from SCADA data and then, make recommended corrective actions.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite precision error analysis for neural network learning Hybrid expert system neural network hierarchical architecture for classifying power system contingencies Neural network application to state estimation computation Short term electric load forecasting using an adaptively trained layered perceptron Neural networks for topology determination of power systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1