室温燃料电池及其在便携式和嵌入式系统中的集成

N. Chang, Jueun Seo, Donghwa Shin, Younghyun Kim
{"title":"室温燃料电池及其在便携式和嵌入式系统中的集成","authors":"N. Chang, Jueun Seo, Donghwa Shin, Younghyun Kim","doi":"10.1109/ASPDAC.2010.5419918","DOIUrl":null,"url":null,"abstract":"Direct methanol fuel cells (DMFCs) are a promising next-generation energy source for portable applications, due to their high energy density and the ease of handling of the liquid fuel. However, the limited range of output power obtainable from a fuel cell requires hybridization the introduction of a battery to form a stand-alone portable power source. Furthermore, the stringent operating conditions to be met by active DMFC systems mandate complicated balance of plant (BOP) control. We present a complete hybrid active DMFC system design and implementation in which a DMFC stack and a li-ion battery are linked by a hybridization circuit to share the applied load to exploit high energy density of the fuel cell and high power density of the battery. We describe systems for fuel delivery, air supply, temperature management, current and voltage measurement, DC-DC conversion and power distribution, motor driving, battery charge management, DMFC and circuit protection, and control of the DMFC and battery as a hybrid. We have designed and implemented an embedded system controller that consists of a 32-bit microcontroller, running under a real-time operating system, that incorporating multiple cascaded feedback control loops which manage the dynamics of BOP control. We demonstrate reliable and efficient maintenance of a constant fuel cell output current in spite of severe fluctuation of the load current.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Room-temperature fuel cells and their integration into portable and embedded systems\",\"authors\":\"N. Chang, Jueun Seo, Donghwa Shin, Younghyun Kim\",\"doi\":\"10.1109/ASPDAC.2010.5419918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct methanol fuel cells (DMFCs) are a promising next-generation energy source for portable applications, due to their high energy density and the ease of handling of the liquid fuel. However, the limited range of output power obtainable from a fuel cell requires hybridization the introduction of a battery to form a stand-alone portable power source. Furthermore, the stringent operating conditions to be met by active DMFC systems mandate complicated balance of plant (BOP) control. We present a complete hybrid active DMFC system design and implementation in which a DMFC stack and a li-ion battery are linked by a hybridization circuit to share the applied load to exploit high energy density of the fuel cell and high power density of the battery. We describe systems for fuel delivery, air supply, temperature management, current and voltage measurement, DC-DC conversion and power distribution, motor driving, battery charge management, DMFC and circuit protection, and control of the DMFC and battery as a hybrid. We have designed and implemented an embedded system controller that consists of a 32-bit microcontroller, running under a real-time operating system, that incorporating multiple cascaded feedback control loops which manage the dynamics of BOP control. We demonstrate reliable and efficient maintenance of a constant fuel cell output current in spite of severe fluctuation of the load current.\",\"PeriodicalId\":152569,\"journal\":{\"name\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2010.5419918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

直接甲醇燃料电池(dmfc)由于其高能量密度和易于处理的液体燃料,是一种很有前途的便携式下一代能源。然而,从燃料电池获得的输出功率的有限范围需要混合电池的引入来形成一个独立的便携式电源。此外,主动DMFC系统要满足严格的运行条件,需要复杂的工厂平衡(BOP)控制。我们提出了一个完整的混合有源DMFC系统的设计和实现,其中DMFC堆叠和锂离子电池通过混合电路连接,以共享施加的负载,以利用燃料电池的高能量密度和电池的高功率密度。我们描述了燃料输送、空气供应、温度管理、电流和电压测量、DC-DC转换和配电、电机驱动、电池充电管理、DMFC和电路保护以及DMFC和电池混合控制的系统。我们设计并实现了一个嵌入式系统控制器,该控制器由一个32位微控制器组成,在实时操作系统下运行,该控制器包含多个级联反馈控制回路,用于管理防喷器控制的动态。我们证明了可靠和有效地维持恒定的燃料电池输出电流,尽管负载电流剧烈波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Room-temperature fuel cells and their integration into portable and embedded systems
Direct methanol fuel cells (DMFCs) are a promising next-generation energy source for portable applications, due to their high energy density and the ease of handling of the liquid fuel. However, the limited range of output power obtainable from a fuel cell requires hybridization the introduction of a battery to form a stand-alone portable power source. Furthermore, the stringent operating conditions to be met by active DMFC systems mandate complicated balance of plant (BOP) control. We present a complete hybrid active DMFC system design and implementation in which a DMFC stack and a li-ion battery are linked by a hybridization circuit to share the applied load to exploit high energy density of the fuel cell and high power density of the battery. We describe systems for fuel delivery, air supply, temperature management, current and voltage measurement, DC-DC conversion and power distribution, motor driving, battery charge management, DMFC and circuit protection, and control of the DMFC and battery as a hybrid. We have designed and implemented an embedded system controller that consists of a 32-bit microcontroller, running under a real-time operating system, that incorporating multiple cascaded feedback control loops which manage the dynamics of BOP control. We demonstrate reliable and efficient maintenance of a constant fuel cell output current in spite of severe fluctuation of the load current.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Platform modeling for exploration and synthesis Application-specific 3D Network-on-Chip design using simulated allocation Rule-based optimization of reversible circuits An extension of the generalized Hamiltonian method to S-parameter descriptor systems Adaptive power management for real-time event streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1