纳米多孔材料中生物分子和溶液的分子模拟

A. Kovalenko
{"title":"纳米多孔材料中生物分子和溶液的分子模拟","authors":"A. Kovalenko","doi":"10.1109/ICMENS.2004.101","DOIUrl":null,"url":null,"abstract":"As one goes down the length scale to nanoworld, the properties of objects and phenomena swerve from those described by the conventional, macroscopic laws governing the behavior of continuous media and materials. The functional features of nanostructures manifest on length scale from one to hundreds nanometers and time scale up to microseconds and more, but all stem from microscopic properties of the atoms and chemical groups they are built of. Explicit molecular modeling of such nanosystems involving millions of molecules is by far not feasible with ab initio methods and molecular simulations, and requires multiple-scale approaches. Statistical-mechanical theory of molecular liquids and other disordered systems successfully describes the molecular structure and thermodynamics of nanosystems, with proper account of their chemical functionalities.¹-⁴ It operates with spatial/temporal distributions of species averaged over the statistical ensemble rather than with trajectories of individual molecules. This coarse-graining, however, keeps the short-range detail of the solvation structure of chemical specificities, such as the hydrophobic effects, hydrogen bonding, and other association effects. Below discussed are two illustrative examples, self-assembly of organic nanotubes in electrolyte solution and electrochemical devices with nanoporous electrodes.","PeriodicalId":344661,"journal":{"name":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Molecular Modeling of Biomolecules and Solutions in Nanoporous Materials\",\"authors\":\"A. Kovalenko\",\"doi\":\"10.1109/ICMENS.2004.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one goes down the length scale to nanoworld, the properties of objects and phenomena swerve from those described by the conventional, macroscopic laws governing the behavior of continuous media and materials. The functional features of nanostructures manifest on length scale from one to hundreds nanometers and time scale up to microseconds and more, but all stem from microscopic properties of the atoms and chemical groups they are built of. Explicit molecular modeling of such nanosystems involving millions of molecules is by far not feasible with ab initio methods and molecular simulations, and requires multiple-scale approaches. Statistical-mechanical theory of molecular liquids and other disordered systems successfully describes the molecular structure and thermodynamics of nanosystems, with proper account of their chemical functionalities.¹-⁴ It operates with spatial/temporal distributions of species averaged over the statistical ensemble rather than with trajectories of individual molecules. This coarse-graining, however, keeps the short-range detail of the solvation structure of chemical specificities, such as the hydrophobic effects, hydrogen bonding, and other association effects. Below discussed are two illustrative examples, self-assembly of organic nanotubes in electrolyte solution and electrochemical devices with nanoporous electrodes.\",\"PeriodicalId\":344661,\"journal\":{\"name\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMENS.2004.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMENS.2004.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当一个人沿着长度尺度下降到纳米世界时,物体和现象的性质就会偏离传统的、控制连续介质和材料行为的宏观规律。纳米结构的功能特征体现在从1纳米到数百纳米的长度尺度和微秒甚至更长的时间尺度上,但它们都源于构成它们的原子和化学基团的微观特性。这种涉及数百万个分子的纳米系统的显式分子建模,到目前为止,用从头算方法和分子模拟是不可行的,需要多尺度的方法。分子液体和其他无序系统的统计力学理论成功地描述了纳米系统的分子结构和热力学,并适当地说明了它们的化学功能。¹-⁴它与统计系综上平均的物种的时空分布一起工作,而不是与单个分子的轨迹一起工作。然而,这种粗粒度保留了化学特异性的溶剂化结构的短期细节,如疏水效应、氢键和其他结合效应。下面讨论两个说明性的例子,有机纳米管在电解质溶液中的自组装和纳米多孔电极的电化学装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Modeling of Biomolecules and Solutions in Nanoporous Materials
As one goes down the length scale to nanoworld, the properties of objects and phenomena swerve from those described by the conventional, macroscopic laws governing the behavior of continuous media and materials. The functional features of nanostructures manifest on length scale from one to hundreds nanometers and time scale up to microseconds and more, but all stem from microscopic properties of the atoms and chemical groups they are built of. Explicit molecular modeling of such nanosystems involving millions of molecules is by far not feasible with ab initio methods and molecular simulations, and requires multiple-scale approaches. Statistical-mechanical theory of molecular liquids and other disordered systems successfully describes the molecular structure and thermodynamics of nanosystems, with proper account of their chemical functionalities.¹-⁴ It operates with spatial/temporal distributions of species averaged over the statistical ensemble rather than with trajectories of individual molecules. This coarse-graining, however, keeps the short-range detail of the solvation structure of chemical specificities, such as the hydrophobic effects, hydrogen bonding, and other association effects. Below discussed are two illustrative examples, self-assembly of organic nanotubes in electrolyte solution and electrochemical devices with nanoporous electrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular Imaging: A Convergence of Technologies Fabrications of Micro-Channel Device by Hot Emboss and Direct Bonding of PMMA Fiber Bragg Grating Sensing Systems Performance Improvement and Assessment Advanced MEMS and Integrated-Optic Components for Multifunctional Integrated Optical Micromachines Novel Tactile Sensors Manufactured by Carbon Microcoils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1