{"title":"活性炭填充环氧梯度复合材料的直流导电性","authors":"Archana Nigrawal","doi":"10.5772/intechopen.85233","DOIUrl":null,"url":null,"abstract":"This chapter reports the DC conductivity behavior of activated carbon powder filled epoxy gradient composites. Gradient composites are the composite materials in which the there is gradually variation in some direction to achieve gradient in properties. Graded materials are generally defined as the materials, which exhibit variable functional performance with location and show continuous variations in morphology and composition. Functionally graded metal matrix composites have been of great practical importance. Graded metal matrix composite have gradual compositional variations from ceramic at one surface to metal at the other, leading to special advantages of smooth transition in thermal stresses across the thickness and minimized stress concentration at the interface of two dissimilar materials. Therefore graded metal matrix composites are finding applications in aggressive environments with steep temperature gradients such as turbine components and rocket nozzles. Since the properties of material in FGMs are variable across the entire material, and depends on the spatial position of the material. Functionally graded materials are designed with varying properties such as changing their chemical properties, changing mechanical, magnetic, thermal, and electrical properties. Now a days there are FGMs designed as stepwise-graded materials, while others are fabri-cated to have continuous-graded materials depending on their areas of application. e. These developed graded polymeric matrix composites having gradual variation of composition from carbonaceous filler at one surface to polymer dominated other end can be developed for desired electrical applications. Different type of sensors such as electrical resistance sensors, current sensors and temperature dependent sensors are required for various applications. Graded polymeric composites show variable resistivity behaviour, which can have potential applications in electromagnetic shielding, antistatic, corrosion-resistant coat-ings, conducting capabilities, light emitting devices, batteries and sensors. By virtue of the improved thermal stress relaxation and adhesive properties etc. Graded polymeric composites show variable resistivity behaviour, which can have potential applications in electromagnetic shielding, antistatic, corrosion-resistant coatings, conducting capabilities, light emitting devices, batteries and sensors.","PeriodicalId":127147,"journal":{"name":"Mechanics of Functionally Graded Materials and Structures","volume":"447 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DC Conductivity of Activated Carbon Filled Epoxy Gradient Composites\",\"authors\":\"Archana Nigrawal\",\"doi\":\"10.5772/intechopen.85233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter reports the DC conductivity behavior of activated carbon powder filled epoxy gradient composites. Gradient composites are the composite materials in which the there is gradually variation in some direction to achieve gradient in properties. Graded materials are generally defined as the materials, which exhibit variable functional performance with location and show continuous variations in morphology and composition. Functionally graded metal matrix composites have been of great practical importance. Graded metal matrix composite have gradual compositional variations from ceramic at one surface to metal at the other, leading to special advantages of smooth transition in thermal stresses across the thickness and minimized stress concentration at the interface of two dissimilar materials. Therefore graded metal matrix composites are finding applications in aggressive environments with steep temperature gradients such as turbine components and rocket nozzles. Since the properties of material in FGMs are variable across the entire material, and depends on the spatial position of the material. Functionally graded materials are designed with varying properties such as changing their chemical properties, changing mechanical, magnetic, thermal, and electrical properties. Now a days there are FGMs designed as stepwise-graded materials, while others are fabri-cated to have continuous-graded materials depending on their areas of application. e. These developed graded polymeric matrix composites having gradual variation of composition from carbonaceous filler at one surface to polymer dominated other end can be developed for desired electrical applications. Different type of sensors such as electrical resistance sensors, current sensors and temperature dependent sensors are required for various applications. Graded polymeric composites show variable resistivity behaviour, which can have potential applications in electromagnetic shielding, antistatic, corrosion-resistant coat-ings, conducting capabilities, light emitting devices, batteries and sensors. By virtue of the improved thermal stress relaxation and adhesive properties etc. Graded polymeric composites show variable resistivity behaviour, which can have potential applications in electromagnetic shielding, antistatic, corrosion-resistant coatings, conducting capabilities, light emitting devices, batteries and sensors.\",\"PeriodicalId\":127147,\"journal\":{\"name\":\"Mechanics of Functionally Graded Materials and Structures\",\"volume\":\"447 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Functionally Graded Materials and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.85233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Functionally Graded Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.85233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DC Conductivity of Activated Carbon Filled Epoxy Gradient Composites
This chapter reports the DC conductivity behavior of activated carbon powder filled epoxy gradient composites. Gradient composites are the composite materials in which the there is gradually variation in some direction to achieve gradient in properties. Graded materials are generally defined as the materials, which exhibit variable functional performance with location and show continuous variations in morphology and composition. Functionally graded metal matrix composites have been of great practical importance. Graded metal matrix composite have gradual compositional variations from ceramic at one surface to metal at the other, leading to special advantages of smooth transition in thermal stresses across the thickness and minimized stress concentration at the interface of two dissimilar materials. Therefore graded metal matrix composites are finding applications in aggressive environments with steep temperature gradients such as turbine components and rocket nozzles. Since the properties of material in FGMs are variable across the entire material, and depends on the spatial position of the material. Functionally graded materials are designed with varying properties such as changing their chemical properties, changing mechanical, magnetic, thermal, and electrical properties. Now a days there are FGMs designed as stepwise-graded materials, while others are fabri-cated to have continuous-graded materials depending on their areas of application. e. These developed graded polymeric matrix composites having gradual variation of composition from carbonaceous filler at one surface to polymer dominated other end can be developed for desired electrical applications. Different type of sensors such as electrical resistance sensors, current sensors and temperature dependent sensors are required for various applications. Graded polymeric composites show variable resistivity behaviour, which can have potential applications in electromagnetic shielding, antistatic, corrosion-resistant coat-ings, conducting capabilities, light emitting devices, batteries and sensors. By virtue of the improved thermal stress relaxation and adhesive properties etc. Graded polymeric composites show variable resistivity behaviour, which can have potential applications in electromagnetic shielding, antistatic, corrosion-resistant coatings, conducting capabilities, light emitting devices, batteries and sensors.