基于分数阶模型的锂电池荷电状态估计

Yuhang Chen, Yi Guo
{"title":"基于分数阶模型的锂电池荷电状态估计","authors":"Yuhang Chen, Yi Guo","doi":"10.1117/12.2689433","DOIUrl":null,"url":null,"abstract":"For the purpose of the present study of lithium battery SOC estimation, fractional-order calculus theory and the fact that the real capacitance is fractional-order in nature mean that integer-order modeling yields incorrect methods. To improve the accuracy of lithium battery state-of-charge (SOC) estimation, a fractional-order traceless Kalman filter technique is proposed with a second-order RC fractional-order model, and a least-squares approach with a variable forgetting factor is utilized to determine battery parameters. The system gives real-time updates to the battery condition and settings through recursive estimation of state and parameter variables. Simulation analysis is performed using experimental data and UDDS operating parameters. The traceless Kalman filter method's simulated values are compared to the simulation outcomes. These results show that the method beats the integer-order traceless Kalman algorithm and that the maximum estimation error of battery SOC can be maintained below 2%. This proves that the proposed approach works as intended.","PeriodicalId":118234,"journal":{"name":"4th International Conference on Information Science, Electrical and Automation Engineering","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOC estimation of lithium battery based on fractional order model\",\"authors\":\"Yuhang Chen, Yi Guo\",\"doi\":\"10.1117/12.2689433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the purpose of the present study of lithium battery SOC estimation, fractional-order calculus theory and the fact that the real capacitance is fractional-order in nature mean that integer-order modeling yields incorrect methods. To improve the accuracy of lithium battery state-of-charge (SOC) estimation, a fractional-order traceless Kalman filter technique is proposed with a second-order RC fractional-order model, and a least-squares approach with a variable forgetting factor is utilized to determine battery parameters. The system gives real-time updates to the battery condition and settings through recursive estimation of state and parameter variables. Simulation analysis is performed using experimental data and UDDS operating parameters. The traceless Kalman filter method's simulated values are compared to the simulation outcomes. These results show that the method beats the integer-order traceless Kalman algorithm and that the maximum estimation error of battery SOC can be maintained below 2%. This proves that the proposed approach works as intended.\",\"PeriodicalId\":118234,\"journal\":{\"name\":\"4th International Conference on Information Science, Electrical and Automation Engineering\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Conference on Information Science, Electrical and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2689433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Information Science, Electrical and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2689433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于目前锂电池SOC估计的研究,分数阶微积分理论和实际电容本质上是分数阶的事实意味着整阶建模产生了不正确的方法。为了提高锂电池荷电状态(SOC)估计的精度,提出了一种基于二阶RC分数阶模型的分数阶无迹卡尔曼滤波技术,并利用带可变遗忘因子的最小二乘法确定电池参数。该系统通过递归估计状态和参数变量,实时更新电池状态和设置。利用实验数据和UDDS工作参数进行仿真分析。将无迹卡尔曼滤波方法的仿真值与仿真结果进行了比较。结果表明,该方法优于整阶无迹卡尔曼算法,电池荷电状态的最大估计误差可保持在2%以下。这证明了所建议的方法按预期工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SOC estimation of lithium battery based on fractional order model
For the purpose of the present study of lithium battery SOC estimation, fractional-order calculus theory and the fact that the real capacitance is fractional-order in nature mean that integer-order modeling yields incorrect methods. To improve the accuracy of lithium battery state-of-charge (SOC) estimation, a fractional-order traceless Kalman filter technique is proposed with a second-order RC fractional-order model, and a least-squares approach with a variable forgetting factor is utilized to determine battery parameters. The system gives real-time updates to the battery condition and settings through recursive estimation of state and parameter variables. Simulation analysis is performed using experimental data and UDDS operating parameters. The traceless Kalman filter method's simulated values are compared to the simulation outcomes. These results show that the method beats the integer-order traceless Kalman algorithm and that the maximum estimation error of battery SOC can be maintained below 2%. This proves that the proposed approach works as intended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A smart brain controlled wheelchair based on TGAM Multi-direction prediction based on SALSTM model for ship motion Study on heart disease prediction based on SVM-GBDT hybrid model Research on intelligent monitoring of roof distributed photovoltaics based on high-reliable power line and wireless communication Design of low-power acceleration processor for convolutional neural networks based on RISC-V
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1