水力脉冲空化射流发生器的机理及应用

Hongna Qu, Gensheng Li, Dongxing Jiang
{"title":"水力脉冲空化射流发生器的机理及应用","authors":"Hongna Qu, Gensheng Li, Dongxing Jiang","doi":"10.3968/8953","DOIUrl":null,"url":null,"abstract":"To improve the rate of penetration (ROP) further, based on analysis of the jet modulating mechanism, a new drilling tool is designed which couples the advantages of both pulsed jet and cavitating jet. When drilling fluid flows through the tool in drilling process, the fluid is modulated to pulsed and cavitating jet by impellers and in self-resonant chamber. Thus, pulsed cavitating jet is formed at the outlet of the bit nozzle. Because of jet pulsation, cavitating erosion and local negative pressure effect, bottom cuttings cleaning efficiency is enhanced and the ROP is improved. The hydraulic pulsed cavitating jet generator has been applied in 8 oil fields and more than 100 wells in China. The results indicated that the maximum density of test drilling fluid was 1.70 g/cm 3 , the maximum test well depth was 6,162 m. The generator could work over 230 h, and the maximum operation time was above 520 h. As the result, the average ROP had been increased by 10.1% to 104.4%. The generator has the characteristics of simple structure and long operation time, and has a well adaptability to the existing drilling equipments, technological parameters, which provides a safe and efficient new drilling technology for deep well.","PeriodicalId":313367,"journal":{"name":"Advances in Petroleum Exploration and Development","volume":"487 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mechanisms and Application for Hydraulic Pulsed Cavitating Jet Generator\",\"authors\":\"Hongna Qu, Gensheng Li, Dongxing Jiang\",\"doi\":\"10.3968/8953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the rate of penetration (ROP) further, based on analysis of the jet modulating mechanism, a new drilling tool is designed which couples the advantages of both pulsed jet and cavitating jet. When drilling fluid flows through the tool in drilling process, the fluid is modulated to pulsed and cavitating jet by impellers and in self-resonant chamber. Thus, pulsed cavitating jet is formed at the outlet of the bit nozzle. Because of jet pulsation, cavitating erosion and local negative pressure effect, bottom cuttings cleaning efficiency is enhanced and the ROP is improved. The hydraulic pulsed cavitating jet generator has been applied in 8 oil fields and more than 100 wells in China. The results indicated that the maximum density of test drilling fluid was 1.70 g/cm 3 , the maximum test well depth was 6,162 m. The generator could work over 230 h, and the maximum operation time was above 520 h. As the result, the average ROP had been increased by 10.1% to 104.4%. The generator has the characteristics of simple structure and long operation time, and has a well adaptability to the existing drilling equipments, technological parameters, which provides a safe and efficient new drilling technology for deep well.\",\"PeriodicalId\":313367,\"journal\":{\"name\":\"Advances in Petroleum Exploration and Development\",\"volume\":\"487 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Petroleum Exploration and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3968/8953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Petroleum Exploration and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3968/8953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了进一步提高机械钻速,在分析射流调制机理的基础上,设计了一种结合脉冲射流和空化射流优点的新型钻具。在钻井过程中,钻井液通过该工具时,流体通过叶轮在自谐振腔内被调制为脉冲空化射流。这样,在钻头喷嘴出口处形成脉冲空化射流。由于射流脉动、空化侵蚀和局部负压效应,提高了底部岩屑清洗效率,提高了机械钻速。水力脉冲空化射流发生器已在全国8个油田、100多口井中得到应用。结果表明,试验钻井液的最大密度为1.70 g/ cm3,最大试验井深为6162 m。机组运行时间可达230 h以上,最大运行时间达到520 h以上,平均ROP提高10.1%,达到104.4%。该发电机结构简单,运行时间长,对现有钻井设备、工艺参数有较好的适应性,为深井钻井提供了一种安全、高效的新工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanisms and Application for Hydraulic Pulsed Cavitating Jet Generator
To improve the rate of penetration (ROP) further, based on analysis of the jet modulating mechanism, a new drilling tool is designed which couples the advantages of both pulsed jet and cavitating jet. When drilling fluid flows through the tool in drilling process, the fluid is modulated to pulsed and cavitating jet by impellers and in self-resonant chamber. Thus, pulsed cavitating jet is formed at the outlet of the bit nozzle. Because of jet pulsation, cavitating erosion and local negative pressure effect, bottom cuttings cleaning efficiency is enhanced and the ROP is improved. The hydraulic pulsed cavitating jet generator has been applied in 8 oil fields and more than 100 wells in China. The results indicated that the maximum density of test drilling fluid was 1.70 g/cm 3 , the maximum test well depth was 6,162 m. The generator could work over 230 h, and the maximum operation time was above 520 h. As the result, the average ROP had been increased by 10.1% to 104.4%. The generator has the characteristics of simple structure and long operation time, and has a well adaptability to the existing drilling equipments, technological parameters, which provides a safe and efficient new drilling technology for deep well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brief Analysis on Application of Compound Salt Drilling Fluids About a Role of Microorganisms in Destruction of Rock Structure of An Oil Reservoir Analysis of Drill Pipe Failure Mechanism in SHYB-583 Well in Saudi Arabia Research on One Novel Logging Interpretation Method of CBM Reservoir The Application of Fuzzy Comprehensive Evaluation in Deepwater Gas Well Testing String Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1