{"title":"乒乓测试:可逆电路的紧凑测试矢量生成","authors":"M. Zamani, M. Tahoori, K. Chakrabarty","doi":"10.1109/VTS.2012.6231097","DOIUrl":null,"url":null,"abstract":"Reversibility as an inherent requirement of quantum computation motivates further research on reversible logic. Due to anticipated high failure rates for such technologies, thorough testing is a must for these circuits. In this paper, we present a compact test generation and application method for reversible circuits which achieves high (100%) fault coverage and can be adopted for BIST implementations. In this method, the next test pattern is the response of the reversible circuit to the previous test pattern. A test generation algorithm to minimize test time and achieve 100% fault coverage is also presented. Simulation results on a set of reversible benchmark circuits confirm that this approach can detect all single missing/repeated gate faults as well as the majority of multiple faults.","PeriodicalId":169611,"journal":{"name":"2012 IEEE 30th VLSI Test Symposium (VTS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Ping-pong test: Compact test vector generation for reversible circuits\",\"authors\":\"M. Zamani, M. Tahoori, K. Chakrabarty\",\"doi\":\"10.1109/VTS.2012.6231097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reversibility as an inherent requirement of quantum computation motivates further research on reversible logic. Due to anticipated high failure rates for such technologies, thorough testing is a must for these circuits. In this paper, we present a compact test generation and application method for reversible circuits which achieves high (100%) fault coverage and can be adopted for BIST implementations. In this method, the next test pattern is the response of the reversible circuit to the previous test pattern. A test generation algorithm to minimize test time and achieve 100% fault coverage is also presented. Simulation results on a set of reversible benchmark circuits confirm that this approach can detect all single missing/repeated gate faults as well as the majority of multiple faults.\",\"PeriodicalId\":169611,\"journal\":{\"name\":\"2012 IEEE 30th VLSI Test Symposium (VTS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 30th VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2012.6231097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2012.6231097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ping-pong test: Compact test vector generation for reversible circuits
Reversibility as an inherent requirement of quantum computation motivates further research on reversible logic. Due to anticipated high failure rates for such technologies, thorough testing is a must for these circuits. In this paper, we present a compact test generation and application method for reversible circuits which achieves high (100%) fault coverage and can be adopted for BIST implementations. In this method, the next test pattern is the response of the reversible circuit to the previous test pattern. A test generation algorithm to minimize test time and achieve 100% fault coverage is also presented. Simulation results on a set of reversible benchmark circuits confirm that this approach can detect all single missing/repeated gate faults as well as the majority of multiple faults.