高维选择后推理的多重分割

Christoph Schultheiss, Claude Renaux, Peter Buhlmann
{"title":"高维选择后推理的多重分割","authors":"Christoph Schultheiss, Claude Renaux, Peter Buhlmann","doi":"10.1214/21-EJS1825","DOIUrl":null,"url":null,"abstract":"We consider post-selection inference for high-dimensional (generalized) linear models. Data carving (Fithian et al., 2014) is a promising technique to perform this task. However, it suffers from the instability of the model selector and hence may lead to poor replicability, especially in high-dimensional settings. We propose the multicarve method inspired by multisplitting, to improve upon stability and replicability. Furthermore, we extend existing concepts to group inference and illustrate the applicability of the methodology also for generalized linear models.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multicarving for high-dimensional post-selection inference\",\"authors\":\"Christoph Schultheiss, Claude Renaux, Peter Buhlmann\",\"doi\":\"10.1214/21-EJS1825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider post-selection inference for high-dimensional (generalized) linear models. Data carving (Fithian et al., 2014) is a promising technique to perform this task. However, it suffers from the instability of the model selector and hence may lead to poor replicability, especially in high-dimensional settings. We propose the multicarve method inspired by multisplitting, to improve upon stability and replicability. Furthermore, we extend existing concepts to group inference and illustrate the applicability of the methodology also for generalized linear models.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-EJS1825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-EJS1825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们考虑高维(广义)线性模型的后选择推理。数据雕刻(Fithian et al., 2014)是执行此任务的一种有前途的技术。然而,它受到模型选择器的不稳定性的影响,因此可能导致较差的可复制性,特别是在高维设置中。我们提出了受多重分裂启发的多重曲线方法,以提高稳定性和可复制性。此外,我们将现有的概念扩展到群推理,并说明该方法也适用于广义线性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multicarving for high-dimensional post-selection inference
We consider post-selection inference for high-dimensional (generalized) linear models. Data carving (Fithian et al., 2014) is a promising technique to perform this task. However, it suffers from the instability of the model selector and hence may lead to poor replicability, especially in high-dimensional settings. We propose the multicarve method inspired by multisplitting, to improve upon stability and replicability. Furthermore, we extend existing concepts to group inference and illustrate the applicability of the methodology also for generalized linear models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting Empirical Bayes Methods and Applications to Special Types of Data Flexible Bayesian modelling of concomitant covariate effects in mixture models A Critique of Differential Abundance Analysis, and Advocacy for an Alternative Post-Processing of MCMC Conditional variance estimator for sufficient dimension reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1