固体扑翼机机翼瞬态流固耦合分析

Mohammad Katibeh, O. Bilgen
{"title":"固体扑翼机机翼瞬态流固耦合分析","authors":"Mohammad Katibeh, O. Bilgen","doi":"10.1115/smasis2019-5557","DOIUrl":null,"url":null,"abstract":"\n One of the means of flight is via flapping and there were many attempts to mimic the wing motion of a bird for centuries. One interesting concept for achieving flight via flapping is the so-called solid-state ornithopter concept which works by using induced strain actuators such as piezoelectric materials for flapping. In this research, we seek to gain a better understanding of the feasibility and performance of the solid-state ornithopter concept. In this paper, the purpose is to analyze a solid state ornithopter wing concept and to study the effect of different geometric parameters. A two-way fluid-structure interaction analysis method is utilized since the geometry of the wing is changing throughout the flapping cycle, and the fluid and the solid domains interact significantly. A parameterized model is utilized in both solid and fluid domains, and the two domains are coupled. Different geometric parameters are defined in the model so that the system-level performance metrics as a function of each parameter can be examined.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Transient Fluid-Structure Interaction Analysis of a Solid State Ornithopter Wing\",\"authors\":\"Mohammad Katibeh, O. Bilgen\",\"doi\":\"10.1115/smasis2019-5557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n One of the means of flight is via flapping and there were many attempts to mimic the wing motion of a bird for centuries. One interesting concept for achieving flight via flapping is the so-called solid-state ornithopter concept which works by using induced strain actuators such as piezoelectric materials for flapping. In this research, we seek to gain a better understanding of the feasibility and performance of the solid-state ornithopter concept. In this paper, the purpose is to analyze a solid state ornithopter wing concept and to study the effect of different geometric parameters. A two-way fluid-structure interaction analysis method is utilized since the geometry of the wing is changing throughout the flapping cycle, and the fluid and the solid domains interact significantly. A parameterized model is utilized in both solid and fluid domains, and the two domains are coupled. Different geometric parameters are defined in the model so that the system-level performance metrics as a function of each parameter can be examined.\",\"PeriodicalId\":235262,\"journal\":{\"name\":\"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/smasis2019-5557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/smasis2019-5557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

其中一种飞行方式是拍打翅膀,几个世纪以来,人们曾多次尝试模仿鸟类的翅膀运动。通过扑翼实现飞行的一个有趣的概念是所谓的固态扑翼机概念,它通过使用感应应变致动器(如压电材料)进行扑翼。在这项研究中,我们试图更好地了解固态扑翼机概念的可行性和性能。本文的目的是分析固体翼的概念,并研究不同几何参数的影响。由于机翼的几何形状在整个扑动周期中不断变化,且流固两畴相互作用显著,因此采用了双向流固耦合分析方法。在固体和流体两个领域都采用了参数化模型,并且两个领域是耦合的。在模型中定义了不同的几何参数,以便可以检查系统级性能指标作为每个参数的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transient Fluid-Structure Interaction Analysis of a Solid State Ornithopter Wing
One of the means of flight is via flapping and there were many attempts to mimic the wing motion of a bird for centuries. One interesting concept for achieving flight via flapping is the so-called solid-state ornithopter concept which works by using induced strain actuators such as piezoelectric materials for flapping. In this research, we seek to gain a better understanding of the feasibility and performance of the solid-state ornithopter concept. In this paper, the purpose is to analyze a solid state ornithopter wing concept and to study the effect of different geometric parameters. A two-way fluid-structure interaction analysis method is utilized since the geometry of the wing is changing throughout the flapping cycle, and the fluid and the solid domains interact significantly. A parameterized model is utilized in both solid and fluid domains, and the two domains are coupled. Different geometric parameters are defined in the model so that the system-level performance metrics as a function of each parameter can be examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coupled Electro-Thermo-Mechanical Modeling of Shape Memory Polymers Design-Oriented Multifidelity Fluid Simulation Using Machine Learned Fidelity Mapping Self-Sensing Composite Materials With Intelligent Fabrics Developing a Smart Façade System Controller for Wind-Induced Vibration Mitigation in Tall Buildings Methodology for Minimizing Operational Influences of the Test Rig During Long-Term Investigations of SMA Wires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1