基于异构网络的转导事件分类

Brucce Neves dos Santos, R. G. Rossi, R. Marcacini
{"title":"基于异构网络的转导事件分类","authors":"Brucce Neves dos Santos, R. G. Rossi, R. Marcacini","doi":"10.1145/3126858.3126893","DOIUrl":null,"url":null,"abstract":"Events can be defined as \"something that occurs at specific place and time associated with some specific actions\". In general, events extracted from news articles and social networks are used to map the information from web to the various phenomena that occur in our physical world. One of the main steps to perform this relationship is the use of machine learning algorithms for event classification, which has received great attention in the web document engineering field in recent years. Traditional machine learning algorithms are based on vector space model representations and supervised classification. However, events are composed of multiple representations such as textual data, temporal information, geographic location and other types of metadata. All these representations are poorly represented together in a vector space model. Moreover, supervised classification requires the labeling of a significant sample of events to construct a training set for learning process, thereby hampering the practical application of event classification. In this paper, we propose a method called TECHN (Transductive Event Classification through Heterogeneous Networks), which considers event metadata as different objects in an heterogeneous network. Besides, the TECHN method has the ability to automatically learn which types of network objects (event metadata) are most efficient in the classification task. In addition, our TECHN method is based on a transductive classification that considers both labeled events and a vast amount of unlabeled events. The experimental results show that TECHN method obtains promising results, especially when we consider different weights of importance for each type of event metadata and a small set of labeled events.","PeriodicalId":338362,"journal":{"name":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Transductive Event Classification through Heterogeneous Networks\",\"authors\":\"Brucce Neves dos Santos, R. G. Rossi, R. Marcacini\",\"doi\":\"10.1145/3126858.3126893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Events can be defined as \\\"something that occurs at specific place and time associated with some specific actions\\\". In general, events extracted from news articles and social networks are used to map the information from web to the various phenomena that occur in our physical world. One of the main steps to perform this relationship is the use of machine learning algorithms for event classification, which has received great attention in the web document engineering field in recent years. Traditional machine learning algorithms are based on vector space model representations and supervised classification. However, events are composed of multiple representations such as textual data, temporal information, geographic location and other types of metadata. All these representations are poorly represented together in a vector space model. Moreover, supervised classification requires the labeling of a significant sample of events to construct a training set for learning process, thereby hampering the practical application of event classification. In this paper, we propose a method called TECHN (Transductive Event Classification through Heterogeneous Networks), which considers event metadata as different objects in an heterogeneous network. Besides, the TECHN method has the ability to automatically learn which types of network objects (event metadata) are most efficient in the classification task. In addition, our TECHN method is based on a transductive classification that considers both labeled events and a vast amount of unlabeled events. The experimental results show that TECHN method obtains promising results, especially when we consider different weights of importance for each type of event metadata and a small set of labeled events.\",\"PeriodicalId\":338362,\"journal\":{\"name\":\"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3126858.3126893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126858.3126893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

事件可以定义为“在特定地点和时间发生的与某些特定行为相关的事情”。一般来说,从新闻文章和社交网络中提取的事件被用来将网络信息映射到我们现实世界中发生的各种现象。实现这种关系的主要步骤之一是使用机器学习算法进行事件分类,这在近年来的web文档工程领域受到了很大的关注。传统的机器学习算法是基于向量空间模型表示和监督分类。但是,事件由多种表示形式组成,例如文本数据、时间信息、地理位置和其他类型的元数据。所有这些表示在向量空间模型中都不能很好地表示在一起。此外,监督分类需要对事件的显著样本进行标记,以构建训练集进行学习过程,从而阻碍了事件分类的实际应用。在本文中,我们提出了一种称为TECHN (Transductive Event Classification through Heterogeneous Networks)的方法,该方法将事件元数据视为异构网络中的不同对象。此外,TECHN方法具有自动学习哪种类型的网络对象(事件元数据)在分类任务中最有效的能力。此外,我们的TECHN方法基于一种转导分类,该分类既考虑了标记事件,也考虑了大量未标记事件。实验结果表明,TECHN方法获得了令人满意的结果,特别是当我们考虑不同类型的事件元数据和一小组标记事件的不同重要权重时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transductive Event Classification through Heterogeneous Networks
Events can be defined as "something that occurs at specific place and time associated with some specific actions". In general, events extracted from news articles and social networks are used to map the information from web to the various phenomena that occur in our physical world. One of the main steps to perform this relationship is the use of machine learning algorithms for event classification, which has received great attention in the web document engineering field in recent years. Traditional machine learning algorithms are based on vector space model representations and supervised classification. However, events are composed of multiple representations such as textual data, temporal information, geographic location and other types of metadata. All these representations are poorly represented together in a vector space model. Moreover, supervised classification requires the labeling of a significant sample of events to construct a training set for learning process, thereby hampering the practical application of event classification. In this paper, we propose a method called TECHN (Transductive Event Classification through Heterogeneous Networks), which considers event metadata as different objects in an heterogeneous network. Besides, the TECHN method has the ability to automatically learn which types of network objects (event metadata) are most efficient in the classification task. In addition, our TECHN method is based on a transductive classification that considers both labeled events and a vast amount of unlabeled events. The experimental results show that TECHN method obtains promising results, especially when we consider different weights of importance for each type of event metadata and a small set of labeled events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STorM: A Hypermedia Authoring Model for Interactive Digital Out-of-Home Media Distributed Data Clustering in the Context of the Internet of Things: A Data Traffic Reduction Approach AnyLanguage-To-LIBRAS: Evaluation of an Machine Translation Service of Any Oralized Language for the Brazilian Sign Language Adaptive Sensing Relevance Exploiting Social Media Mining in Smart Cities Automatic Text Recognition in Web Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1