基于FPGA的硅脉冲神经阵列

A. Cassidy, S. Denham, P. Kanold, A. Andreou
{"title":"基于FPGA的硅脉冲神经阵列","authors":"A. Cassidy, S. Denham, P. Kanold, A. Andreou","doi":"10.1109/BIOCAS.2007.4463312","DOIUrl":null,"url":null,"abstract":"Rapid design time, low cost, flexibility, digital precision, and stability are characteristics that favor FPGAs as a promising alternative to analog VLSI based approaches for designing neuromorphic systems. High computational power as well as low size, weight, and power (SWAP) are advantages that FPGAs demonstrate over software based neuromorphic systems. We present an FPGA based array of Leaky-Integrate and Fire (LIF) artificial neurons. Using this array, we demonstrate three neural computational experiments: auditory Spatio-Temporal Receptive Fields (STRFs), a neural parameter optimizing algorithm, and an implementation of the Spike Time Dependant Plasticity (STDP) learning rule.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"FPGA Based Silicon Spiking Neural Array\",\"authors\":\"A. Cassidy, S. Denham, P. Kanold, A. Andreou\",\"doi\":\"10.1109/BIOCAS.2007.4463312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid design time, low cost, flexibility, digital precision, and stability are characteristics that favor FPGAs as a promising alternative to analog VLSI based approaches for designing neuromorphic systems. High computational power as well as low size, weight, and power (SWAP) are advantages that FPGAs demonstrate over software based neuromorphic systems. We present an FPGA based array of Leaky-Integrate and Fire (LIF) artificial neurons. Using this array, we demonstrate three neural computational experiments: auditory Spatio-Temporal Receptive Fields (STRFs), a neural parameter optimizing algorithm, and an implementation of the Spike Time Dependant Plasticity (STDP) learning rule.\",\"PeriodicalId\":273819,\"journal\":{\"name\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2007.4463312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

快速的设计时间、低成本、灵活性、数字精度和稳定性是fpga作为基于模拟VLSI的神经形态系统设计方法的有前途的替代品的特点。与基于软件的神经形态系统相比,高计算能力以及低尺寸、重量和功耗(SWAP)是fpga的优势。我们提出了一种基于FPGA的泄漏集成和火灾(LIF)人工神经元阵列。利用该阵列,我们演示了三个神经计算实验:听觉时空感受场(strf)、神经参数优化算法和峰值时间依赖可塑性(STDP)学习规则的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FPGA Based Silicon Spiking Neural Array
Rapid design time, low cost, flexibility, digital precision, and stability are characteristics that favor FPGAs as a promising alternative to analog VLSI based approaches for designing neuromorphic systems. High computational power as well as low size, weight, and power (SWAP) are advantages that FPGAs demonstrate over software based neuromorphic systems. We present an FPGA based array of Leaky-Integrate and Fire (LIF) artificial neurons. Using this array, we demonstrate three neural computational experiments: auditory Spatio-Temporal Receptive Fields (STRFs), a neural parameter optimizing algorithm, and an implementation of the Spike Time Dependant Plasticity (STDP) learning rule.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breast Lesions Classification Using Modified Non-Recursive Discrete Biorthogonal Wavelet Transform Efficient Computation of the LF/HF Ratio in Heart Rate Variability Analysis Based on Bitstream Filtering On the Swept-threshold Sampling in UWB Medical Radar Long-term monitoring of electrochemical parameters from stimulated neural tissues A Mixed-Signal Multi-Chip Neural Recording Interface with Bandwidth Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1