构建最优双向上下文集的高效算法

F. Fernandez, Alfredo Viola, M. Weinberger
{"title":"构建最优双向上下文集的高效算法","authors":"F. Fernandez, Alfredo Viola, M. Weinberger","doi":"10.1109/DCC.2010.23","DOIUrl":null,"url":null,"abstract":"Bi-directional context sets extend the classical context-tree modeling framework to situations in which the observations consist of two tracks or directions. In this paper, we study the problem of efficiently finding an optimal bi-directional context set for a given data sequence and loss function. This problem has applications in data compression, prediction, and denoising. The main tool in our construction is a new data structure, the compact bi-directional context graph, which generalizes compact suffix trees to two directions.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Efficient Algorithms for Constructing Optimal Bi-directional Context Sets\",\"authors\":\"F. Fernandez, Alfredo Viola, M. Weinberger\",\"doi\":\"10.1109/DCC.2010.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bi-directional context sets extend the classical context-tree modeling framework to situations in which the observations consist of two tracks or directions. In this paper, we study the problem of efficiently finding an optimal bi-directional context set for a given data sequence and loss function. This problem has applications in data compression, prediction, and denoising. The main tool in our construction is a new data structure, the compact bi-directional context graph, which generalizes compact suffix trees to two directions.\",\"PeriodicalId\":299459,\"journal\":{\"name\":\"2010 Data Compression Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2010.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

双向上下文集将经典的上下文树建模框架扩展到观察由两个轨道或方向组成的情况。本文研究了给定数据序列和损失函数的最优双向上下文集的有效查找问题。这个问题在数据压缩、预测和去噪方面都有应用。我们构建的主要工具是一种新的数据结构,紧凑双向上下文图,它将紧凑后缀树推广到两个方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Algorithms for Constructing Optimal Bi-directional Context Sets
Bi-directional context sets extend the classical context-tree modeling framework to situations in which the observations consist of two tracks or directions. In this paper, we study the problem of efficiently finding an optimal bi-directional context set for a given data sequence and loss function. This problem has applications in data compression, prediction, and denoising. The main tool in our construction is a new data structure, the compact bi-directional context graph, which generalizes compact suffix trees to two directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shape Recognition Using Vector Quantization Lossless Reduced Cutset Coding of Markov Random Fields Optimized Analog Mappings for Distributed Source-Channel Coding An MCMC Approach to Lossy Compression of Continuous Sources Lossless Compression of Mapped Domain Linear Prediction Residual for ITU-T Recommendation G.711.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1