基于神经网络的土壤颗粒流模型参数估计

Shouju Li, Li Wu, Fuzheng Qu, Wei Sun
{"title":"基于神经网络的土壤颗粒流模型参数估计","authors":"Shouju Li, Li Wu, Fuzheng Qu, Wei Sun","doi":"10.4156/JCIT.VOL5.ISSUE8.3","DOIUrl":null,"url":null,"abstract":"A calibration process is developed to determine the parameter values. Three-axial compressions tests in laboratory and neural network are used to determine the material internal friction angle and stiffness, respectively. These tests are repeated numerically using PFC models with different sets of particle friction coefficients and particle stiffness values. Three-axial compressions tests are found to be dependent on both the particle friction coefficient and the particle stiffness. The compression test results can be used to determine a unique set of particle friction and particle stiffness values. The calibration process is validated by modelling filling process of head chamber of shield machine. It is shown that the parameter estimation procedure proposed in the paper can accurately predict the deformation characteristics and flow patterns of conditioned soils.","PeriodicalId":360193,"journal":{"name":"J. Convergence Inf. Technol.","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Parameter Estimation of Particle Flow Model for Soils Using Neural Networks\",\"authors\":\"Shouju Li, Li Wu, Fuzheng Qu, Wei Sun\",\"doi\":\"10.4156/JCIT.VOL5.ISSUE8.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A calibration process is developed to determine the parameter values. Three-axial compressions tests in laboratory and neural network are used to determine the material internal friction angle and stiffness, respectively. These tests are repeated numerically using PFC models with different sets of particle friction coefficients and particle stiffness values. Three-axial compressions tests are found to be dependent on both the particle friction coefficient and the particle stiffness. The compression test results can be used to determine a unique set of particle friction and particle stiffness values. The calibration process is validated by modelling filling process of head chamber of shield machine. It is shown that the parameter estimation procedure proposed in the paper can accurately predict the deformation characteristics and flow patterns of conditioned soils.\",\"PeriodicalId\":360193,\"journal\":{\"name\":\"J. Convergence Inf. Technol.\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Convergence Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Convergence Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/JCIT.VOL5.ISSUE8.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

开发了一种校准过程来确定参数值。采用室内三轴压缩试验和神经网络分别确定了材料内摩擦角和刚度。采用不同颗粒摩擦系数和颗粒刚度值的PFC模型对这些试验进行了数值重复。发现三轴压缩试验同时依赖于颗粒摩擦系数和颗粒刚度。压缩试验结果可用于确定一套独特的颗粒摩擦和颗粒刚度值。通过对盾构机头腔充填过程的建模,验证了标定过程。结果表明,本文提出的参数估计方法能较准确地预测条件土的变形特征和流态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter Estimation of Particle Flow Model for Soils Using Neural Networks
A calibration process is developed to determine the parameter values. Three-axial compressions tests in laboratory and neural network are used to determine the material internal friction angle and stiffness, respectively. These tests are repeated numerically using PFC models with different sets of particle friction coefficients and particle stiffness values. Three-axial compressions tests are found to be dependent on both the particle friction coefficient and the particle stiffness. The compression test results can be used to determine a unique set of particle friction and particle stiffness values. The calibration process is validated by modelling filling process of head chamber of shield machine. It is shown that the parameter estimation procedure proposed in the paper can accurately predict the deformation characteristics and flow patterns of conditioned soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Maximal Frequent Pattern Outlier Factor for Online High-Dimensional Time-Series Outlier Detection Spirit: Security and Privacy in Real-Time Monitoring System Integrating Product Information Management (PIM) with Internet-Mediated Transactions (IMTs) Area Optimization in Floorplanning Using AP-TCG People Summarization by Combining Named Entity Recognition and Relation Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1