广义分美元博弈的进化神经网络

G. Greenwood, D. Ashlock
{"title":"广义分美元博弈的进化神经网络","authors":"G. Greenwood, D. Ashlock","doi":"10.1109/CEC55065.2022.9870386","DOIUrl":null,"url":null,"abstract":"Divide the dollar is a simpler version of a game invented by John Nash to study the bargaining problem. The generalized divide the dollar game is an n-player version. Evolutionary algorithms can be used to evolve players for this game, but it has been previously shown representation has a profound effect on the success of the evolutionary search. Representation defines both the genome and the move (search) operator used by the evolutionary algorithm. This study investigates how well two representations for a 3-player generalized divide the dollar game, one using a differential evolution move operator and the other a CMA-ES move operator, can find good players implemented as neural networks. Our results indicate both representations can evolve very good player trios, but the CMA-ES representation tends to evolve fairer players.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evolving Neural Networks for a Generalized Divide the Dollar Game\",\"authors\":\"G. Greenwood, D. Ashlock\",\"doi\":\"10.1109/CEC55065.2022.9870386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Divide the dollar is a simpler version of a game invented by John Nash to study the bargaining problem. The generalized divide the dollar game is an n-player version. Evolutionary algorithms can be used to evolve players for this game, but it has been previously shown representation has a profound effect on the success of the evolutionary search. Representation defines both the genome and the move (search) operator used by the evolutionary algorithm. This study investigates how well two representations for a 3-player generalized divide the dollar game, one using a differential evolution move operator and the other a CMA-ES move operator, can find good players implemented as neural networks. Our results indicate both representations can evolve very good player trios, but the CMA-ES representation tends to evolve fairer players.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

平分美元是约翰·纳什为研究议价问题而发明的游戏的一个简单版本。广义分钱游戏是一个n人游戏。进化算法可以用来为这个游戏进化玩家,但之前的研究表明,代表性对进化搜索的成功有着深远的影响。表示定义了基因组和进化算法使用的移动(搜索)操作符。本研究探讨了3人广义分美元博弈的两种表示,一种使用微分进化移动算子,另一种使用CMA-ES移动算子,可以找到作为神经网络实现的优秀玩家。我们的研究结果表明,这两种表征都可以进化出非常优秀的玩家三人组,但CMA-ES表征倾向于进化出更公平的玩家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolving Neural Networks for a Generalized Divide the Dollar Game
Divide the dollar is a simpler version of a game invented by John Nash to study the bargaining problem. The generalized divide the dollar game is an n-player version. Evolutionary algorithms can be used to evolve players for this game, but it has been previously shown representation has a profound effect on the success of the evolutionary search. Representation defines both the genome and the move (search) operator used by the evolutionary algorithm. This study investigates how well two representations for a 3-player generalized divide the dollar game, one using a differential evolution move operator and the other a CMA-ES move operator, can find good players implemented as neural networks. Our results indicate both representations can evolve very good player trios, but the CMA-ES representation tends to evolve fairer players.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1