通过估算微粗糙表面的特性来提高形状恢复

H. Ragheb, E. Hancock
{"title":"通过估算微粗糙表面的特性来提高形状恢复","authors":"H. Ragheb, E. Hancock","doi":"10.1109/ICIAP.2003.1234021","DOIUrl":null,"url":null,"abstract":"We illustrate the use of the Beckmann formulation of the Kirchhoff theory for surface analysis problems in computer vision. The Beckmann model is a physical model that describes the reflectance of light from rough surfaces. Here, we use the modified form of the Beckmann model for slightly-rough surfaces using the modification of C.L. Vernold and J.E. Harvey (see Proc. SPIE, vol.3426, p.51-6, 1998). The parameters of the model are the surface roughness and the correlation length. We show how the surface roughness can be estimated using the specular reflectance properties. We also propose a technique for estimating the correlation length using pairs of surface images, subject to different illumination directions. With these parameters to hand, the Beckmann model may be used to perform photometric correction, and hence shape-from-shading may be applied to the corrected Lambertian image to recover improved shape. This model may also be used to re-illuminate the recovered surface. We present experiments to illustrate the utility of the method for each of these tasks.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving shape recovery by estimating properties of slightly-rough surfaces\",\"authors\":\"H. Ragheb, E. Hancock\",\"doi\":\"10.1109/ICIAP.2003.1234021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We illustrate the use of the Beckmann formulation of the Kirchhoff theory for surface analysis problems in computer vision. The Beckmann model is a physical model that describes the reflectance of light from rough surfaces. Here, we use the modified form of the Beckmann model for slightly-rough surfaces using the modification of C.L. Vernold and J.E. Harvey (see Proc. SPIE, vol.3426, p.51-6, 1998). The parameters of the model are the surface roughness and the correlation length. We show how the surface roughness can be estimated using the specular reflectance properties. We also propose a technique for estimating the correlation length using pairs of surface images, subject to different illumination directions. With these parameters to hand, the Beckmann model may be used to perform photometric correction, and hence shape-from-shading may be applied to the corrected Lambertian image to recover improved shape. This model may also be used to re-illuminate the recovered surface. We present experiments to illustrate the utility of the method for each of these tasks.\",\"PeriodicalId\":218076,\"journal\":{\"name\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2003.1234021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们说明了在计算机视觉表面分析问题中使用贝克曼公式的基尔霍夫理论。贝克曼模型是描述粗糙表面的光反射率的物理模型。在这里,我们使用贝克曼模型的修改形式,使用C.L. Vernold和J.E. Harvey的修改(见Proc. SPIE, vol.3426, p.51-6, 1998)。模型的参数为表面粗糙度和相关长度。我们展示了如何使用镜面反射特性来估计表面粗糙度。我们还提出了一种利用不同照明方向的表面图像对估计相关长度的技术。有了这些参数,贝克曼模型可以用来进行光度校正,因此可以将阴影形状应用于校正后的兰伯特图像,以恢复改进的形状。这个模型也可以用来重新照亮恢复的表面。我们提供实验来说明该方法对这些任务的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving shape recovery by estimating properties of slightly-rough surfaces
We illustrate the use of the Beckmann formulation of the Kirchhoff theory for surface analysis problems in computer vision. The Beckmann model is a physical model that describes the reflectance of light from rough surfaces. Here, we use the modified form of the Beckmann model for slightly-rough surfaces using the modification of C.L. Vernold and J.E. Harvey (see Proc. SPIE, vol.3426, p.51-6, 1998). The parameters of the model are the surface roughness and the correlation length. We show how the surface roughness can be estimated using the specular reflectance properties. We also propose a technique for estimating the correlation length using pairs of surface images, subject to different illumination directions. With these parameters to hand, the Beckmann model may be used to perform photometric correction, and hence shape-from-shading may be applied to the corrected Lambertian image to recover improved shape. This model may also be used to re-illuminate the recovered surface. We present experiments to illustrate the utility of the method for each of these tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1