使用复眼相机的基于视觉的3D重建

Wooseok Oh, Hwiyeon Yoo, Timothy Ha, Songhwai Oh
{"title":"使用复眼相机的基于视觉的3D重建","authors":"Wooseok Oh, Hwiyeon Yoo, Timothy Ha, Songhwai Oh","doi":"10.23919/ICCAS52745.2021.9649968","DOIUrl":null,"url":null,"abstract":"The vision-based 3D reconstruction methods have various advantages and can be used in various applications such as navigation. Although various vision-based methods are being studied, it is difficult to reconstruct many parts at once with a general camera because of a small FOV. To solve this problem, we propose a coarse but lightweight reconstruction method using a camera with a unique structure called a compound eye with various advantages such as large FOV. In the process, we devise a network that performs depth estimation on a compound eye structure to obtain a depth image containing 3D information from an RGB image. We tested our methods by collecting data using a compound eye camera implemented in a Gazebo simulation and simulation scenes we created. As a result, our 3D reconstruction method using the data we collected and the confidence score from our depth estimation result, can capture the environment with a high recall of 97.51 %.","PeriodicalId":411064,"journal":{"name":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vision-Based 3D Reconstruction Using a Compound Eye Camera\",\"authors\":\"Wooseok Oh, Hwiyeon Yoo, Timothy Ha, Songhwai Oh\",\"doi\":\"10.23919/ICCAS52745.2021.9649968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vision-based 3D reconstruction methods have various advantages and can be used in various applications such as navigation. Although various vision-based methods are being studied, it is difficult to reconstruct many parts at once with a general camera because of a small FOV. To solve this problem, we propose a coarse but lightweight reconstruction method using a camera with a unique structure called a compound eye with various advantages such as large FOV. In the process, we devise a network that performs depth estimation on a compound eye structure to obtain a depth image containing 3D information from an RGB image. We tested our methods by collecting data using a compound eye camera implemented in a Gazebo simulation and simulation scenes we created. As a result, our 3D reconstruction method using the data we collected and the confidence score from our depth estimation result, can capture the environment with a high recall of 97.51 %.\",\"PeriodicalId\":411064,\"journal\":{\"name\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS52745.2021.9649968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS52745.2021.9649968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于视觉的三维重建方法具有多种优点,可用于导航等多种应用。尽管人们正在研究各种基于视觉的方法,但由于普通摄像机视场小,很难一次重建许多部件。为了解决这一问题,我们提出了一种粗糙但轻巧的重建方法,使用具有大视场等优点的独特结构的复眼相机。在此过程中,我们设计了一个对复眼结构进行深度估计的网络,以从RGB图像中获得包含3D信息的深度图像。我们通过使用在Gazebo模拟和我们创建的模拟场景中实现的复眼相机收集数据来测试我们的方法。结果表明,我们的三维重建方法利用我们收集的数据和深度估计结果的置信度得分,可以以97.51%的高召回率捕获环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vision-Based 3D Reconstruction Using a Compound Eye Camera
The vision-based 3D reconstruction methods have various advantages and can be used in various applications such as navigation. Although various vision-based methods are being studied, it is difficult to reconstruct many parts at once with a general camera because of a small FOV. To solve this problem, we propose a coarse but lightweight reconstruction method using a camera with a unique structure called a compound eye with various advantages such as large FOV. In the process, we devise a network that performs depth estimation on a compound eye structure to obtain a depth image containing 3D information from an RGB image. We tested our methods by collecting data using a compound eye camera implemented in a Gazebo simulation and simulation scenes we created. As a result, our 3D reconstruction method using the data we collected and the confidence score from our depth estimation result, can capture the environment with a high recall of 97.51 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta Reinforcement Learning Based Underwater Manipulator Control Object Detection and Tracking System with Improved DBSCAN Clustering using Radar on Unmanned Surface Vehicle A Method for Evaluating of Asymmetry on Cleft Lip Using Symmetry Plane Average Blurring-based Anomaly Detection for Vision-based Mask Inspection Systems Design and Fabrication of a Robotic Knee-Type Prosthetic Leg with a Two-Way Hydraulic Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1