基于双语映射的平行语料库跨语言信息检索

Rinaldi Andrian Rahmanda, M. Adriani, Dipta Tanaya
{"title":"基于双语映射的平行语料库跨语言信息检索","authors":"Rinaldi Andrian Rahmanda, M. Adriani, Dipta Tanaya","doi":"10.1109/IALP48816.2019.9037705","DOIUrl":null,"url":null,"abstract":"This study presents an approach to generate a bilingual language model that will be used for CLIR task. Language models for Bahasa Indonesia and English are created by utilizing a bilingual parallel corpus, and then the bilingual language model is created by learning the mapping between the Indonesian model and the English model using the Multilayer Perceptron model. Query expansion is also used in this system to boost the results of the retrieval, using pre-Bilingual Mapping, post-Bilingual Mapping and hybrid approaches. The results of the experiments show that the implemented system, with the addition of pre-Bilingual Mapping query expansion, manages to improve the performance of the CLIR task.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cross Language Information Retrieval Using Parallel Corpus with Bilingual Mapping Method\",\"authors\":\"Rinaldi Andrian Rahmanda, M. Adriani, Dipta Tanaya\",\"doi\":\"10.1109/IALP48816.2019.9037705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an approach to generate a bilingual language model that will be used for CLIR task. Language models for Bahasa Indonesia and English are created by utilizing a bilingual parallel corpus, and then the bilingual language model is created by learning the mapping between the Indonesian model and the English model using the Multilayer Perceptron model. Query expansion is also used in this system to boost the results of the retrieval, using pre-Bilingual Mapping, post-Bilingual Mapping and hybrid approaches. The results of the experiments show that the implemented system, with the addition of pre-Bilingual Mapping query expansion, manages to improve the performance of the CLIR task.\",\"PeriodicalId\":208066,\"journal\":{\"name\":\"2019 International Conference on Asian Language Processing (IALP)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP48816.2019.9037705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了一种生成用于CLIR任务的双语语言模型的方法。利用双语平行语料库创建印尼语和英语的语言模型,然后使用多层感知器模型学习印尼语模型和英语模型之间的映射,从而创建双语语言模型。该系统还采用了前双语映射、后双语映射和混合映射的方法来扩展查询,以提高检索结果。实验结果表明,该系统增加了前置双语映射查询扩展功能,有效地提高了CLIR任务的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross Language Information Retrieval Using Parallel Corpus with Bilingual Mapping Method
This study presents an approach to generate a bilingual language model that will be used for CLIR task. Language models for Bahasa Indonesia and English are created by utilizing a bilingual parallel corpus, and then the bilingual language model is created by learning the mapping between the Indonesian model and the English model using the Multilayer Perceptron model. Query expansion is also used in this system to boost the results of the retrieval, using pre-Bilingual Mapping, post-Bilingual Mapping and hybrid approaches. The results of the experiments show that the implemented system, with the addition of pre-Bilingual Mapping query expansion, manages to improve the performance of the CLIR task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A General Procedure for Improving Language Models in Low-Resource Speech Recognition Automated Prediction of Item Difficulty in Reading Comprehension Using Long Short-Term Memory An Measurement Method of Ancient Poetry Difficulty for Adaptive Testing How to Answer Comparison Questions An Enhancement of Malay Social Media Text Normalization for Lexicon-Based Sentiment Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1