教学与回放焊接机器人路径规划优化

Yuehai Wang, Ning Chi
{"title":"教学与回放焊接机器人路径规划优化","authors":"Yuehai Wang, Ning Chi","doi":"10.11591/TELKOMNIKA.V11I2.2061","DOIUrl":null,"url":null,"abstract":"Path planning for the industrial robot plays an important role in the intelligent control of robot. Tradition strategies, including model-based methods and human taught based methods, find it is difficult to control manipulator intelligently and optically. Thus, it is hard to ensure the better performance and lower energy consumption even if the same welding task was executed repeatedly. A path planning optimization method was proposed to add learning ability to teaching and playback welding robot. The optimization was divided into the welding points sequence improvement and trajectory improvement, which was done both on-line and off-line. Points sequence optimization was modeled as TSP and was continuously improved by genetic algorithm based strategy, while the trajectory between two welding points was on-line improved by an try-and-error strategy where the robot try different trajectory from time to time so as to search a better plan. Simulation results verified that this control strategy reduced the time and energy cost as compared with the man-made fix-order sequence. Our method prevents the robot from the computation-intensive model-based control, and offers a convenient way for self-improvement on the basis of human teaching.","PeriodicalId":414053,"journal":{"name":"TELKOMNIKA : Indonesian Journal of Electrical Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Path Planning Optimization for Teaching and Playback Welding Robot\",\"authors\":\"Yuehai Wang, Ning Chi\",\"doi\":\"10.11591/TELKOMNIKA.V11I2.2061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Path planning for the industrial robot plays an important role in the intelligent control of robot. Tradition strategies, including model-based methods and human taught based methods, find it is difficult to control manipulator intelligently and optically. Thus, it is hard to ensure the better performance and lower energy consumption even if the same welding task was executed repeatedly. A path planning optimization method was proposed to add learning ability to teaching and playback welding robot. The optimization was divided into the welding points sequence improvement and trajectory improvement, which was done both on-line and off-line. Points sequence optimization was modeled as TSP and was continuously improved by genetic algorithm based strategy, while the trajectory between two welding points was on-line improved by an try-and-error strategy where the robot try different trajectory from time to time so as to search a better plan. Simulation results verified that this control strategy reduced the time and energy cost as compared with the man-made fix-order sequence. Our method prevents the robot from the computation-intensive model-based control, and offers a convenient way for self-improvement on the basis of human teaching.\",\"PeriodicalId\":414053,\"journal\":{\"name\":\"TELKOMNIKA : Indonesian Journal of Electrical Engineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TELKOMNIKA : Indonesian Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/TELKOMNIKA.V11I2.2061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELKOMNIKA : Indonesian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/TELKOMNIKA.V11I2.2061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

工业机器人的路径规划在机器人智能控制中起着重要的作用。传统的机械臂控制策略,包括基于模型的方法和基于人工教学的方法,难以实现机械臂的智能光学控制。因此,即使重复执行相同的焊接任务,也很难保证更好的性能和更低的能耗。提出了一种路径规划优化方法,为教放式焊接机器人增加学习能力。优化分为焊点顺序优化和轨迹优化,采用在线和离线两种方式进行。点序列优化建模为TSP,并通过基于遗传算法的策略不断改进,焊接点之间的轨迹通过不断尝试不同轨迹的尝试策略在线改进,以寻找更好的方案。仿真结果验证了该控制策略与人工定阶序列相比,降低了时间和能量成本。我们的方法使机器人避免了计算密集型的基于模型的控制,并在人类教学的基础上提供了一种方便的自我改进方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Path Planning Optimization for Teaching and Playback Welding Robot
Path planning for the industrial robot plays an important role in the intelligent control of robot. Tradition strategies, including model-based methods and human taught based methods, find it is difficult to control manipulator intelligently and optically. Thus, it is hard to ensure the better performance and lower energy consumption even if the same welding task was executed repeatedly. A path planning optimization method was proposed to add learning ability to teaching and playback welding robot. The optimization was divided into the welding points sequence improvement and trajectory improvement, which was done both on-line and off-line. Points sequence optimization was modeled as TSP and was continuously improved by genetic algorithm based strategy, while the trajectory between two welding points was on-line improved by an try-and-error strategy where the robot try different trajectory from time to time so as to search a better plan. Simulation results verified that this control strategy reduced the time and energy cost as compared with the man-made fix-order sequence. Our method prevents the robot from the computation-intensive model-based control, and offers a convenient way for self-improvement on the basis of human teaching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Accurate Spelling Correction Using Trie and Damerau-levenshtein Distance Bigram Role of Socio- Cognitive View and Relational View inUnderstanding the Continued Use of Internet Banking Fast and Accurate Spelling Correction Using Trie and Bigram WIRELESS DATA COMMUNICATION TECHNIQUES TO COORDINATE SINGLE-PHASE ROOFTOP PVs IN UNBALANCED THREE-PHASE LOW VOLTAGE FEEDER Stream a Framework for Detecting Movement Indoors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1