{"title":"重载超高压线路和距离保护","authors":"J.M. Grellier","doi":"10.1109/ISIE.2006.295849","DOIUrl":null,"url":null,"abstract":"Heavy loaded lines (up to 9000 A) raise a difficulty for distance protections because the load equivalent impedance is smaller than some short-circuit impedance. Moreover, the load transfer during single-phase reclosing cycles activates the phase-ground measurement loops. An electrotechnical analysis of the risks of spurious operation or failure and a comparative study of the solutions by impedance blinders and power blinders are presented, this last method being eliminated because not compatible with loads between very great short-circuit power substations. The heavy load requests to have a slope of the zone 1 reactance reach of about 45deg. The corollary is that the single-phase faults with a resistance of about 10 ohms in the middle of the line are detected in zone 1 by none of the ends. In the same way, protections of a strongly importing substation but of low short-circuit power do not detect the single-phase faults. The load transfers during single-phase cycles are made on the parallel system if the short-circuit power of one substation is weak. The risky case is that of a resistive load with capacitive compensation shunt, which authorizes high transit while remaining within the contractual voltage limits: the corresponding phase of the parallel system sees its single-phase loop activated. The use of blinders is effective but does not allow a correct detection of the single-phase faults with a resistance of about 10 ohms. The tests carried out with a distance protection confirm these results","PeriodicalId":296467,"journal":{"name":"2006 IEEE International Symposium on Industrial Electronics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heavy Loaded Very High Voltage Lines and Distance Protections\",\"authors\":\"J.M. Grellier\",\"doi\":\"10.1109/ISIE.2006.295849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heavy loaded lines (up to 9000 A) raise a difficulty for distance protections because the load equivalent impedance is smaller than some short-circuit impedance. Moreover, the load transfer during single-phase reclosing cycles activates the phase-ground measurement loops. An electrotechnical analysis of the risks of spurious operation or failure and a comparative study of the solutions by impedance blinders and power blinders are presented, this last method being eliminated because not compatible with loads between very great short-circuit power substations. The heavy load requests to have a slope of the zone 1 reactance reach of about 45deg. The corollary is that the single-phase faults with a resistance of about 10 ohms in the middle of the line are detected in zone 1 by none of the ends. In the same way, protections of a strongly importing substation but of low short-circuit power do not detect the single-phase faults. The load transfers during single-phase cycles are made on the parallel system if the short-circuit power of one substation is weak. The risky case is that of a resistive load with capacitive compensation shunt, which authorizes high transit while remaining within the contractual voltage limits: the corresponding phase of the parallel system sees its single-phase loop activated. The use of blinders is effective but does not allow a correct detection of the single-phase faults with a resistance of about 10 ohms. The tests carried out with a distance protection confirm these results\",\"PeriodicalId\":296467,\"journal\":{\"name\":\"2006 IEEE International Symposium on Industrial Electronics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Industrial Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2006.295849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2006.295849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heavy Loaded Very High Voltage Lines and Distance Protections
Heavy loaded lines (up to 9000 A) raise a difficulty for distance protections because the load equivalent impedance is smaller than some short-circuit impedance. Moreover, the load transfer during single-phase reclosing cycles activates the phase-ground measurement loops. An electrotechnical analysis of the risks of spurious operation or failure and a comparative study of the solutions by impedance blinders and power blinders are presented, this last method being eliminated because not compatible with loads between very great short-circuit power substations. The heavy load requests to have a slope of the zone 1 reactance reach of about 45deg. The corollary is that the single-phase faults with a resistance of about 10 ohms in the middle of the line are detected in zone 1 by none of the ends. In the same way, protections of a strongly importing substation but of low short-circuit power do not detect the single-phase faults. The load transfers during single-phase cycles are made on the parallel system if the short-circuit power of one substation is weak. The risky case is that of a resistive load with capacitive compensation shunt, which authorizes high transit while remaining within the contractual voltage limits: the corresponding phase of the parallel system sees its single-phase loop activated. The use of blinders is effective but does not allow a correct detection of the single-phase faults with a resistance of about 10 ohms. The tests carried out with a distance protection confirm these results