{"title":"蛋白质相关文本分类的遗传编程","authors":"M. Segond, C. Fonlupt, D. Robilliard","doi":"10.1145/1569901.1570049","DOIUrl":null,"url":null,"abstract":"Since the genomics revolution, bioinformatics has never been so popular. Many researchers have investigated with great success the use of evolutionary computation in bioinformatics [19] for example in the field of protein folding or determining genome sequences. In this paper, instead of using evolutionary computation as a way to provide new and innovative solutions to complex bioinformatics problems, we use genetic programming as a tool to evolve programs that are able to automatically classify research papers as dealing or not with a given protein. In a second part, we show that the attributes that are selected by the genetic programming evolved programs can be used efficiently for proteins classification.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Genetic programming for protein related text classification\",\"authors\":\"M. Segond, C. Fonlupt, D. Robilliard\",\"doi\":\"10.1145/1569901.1570049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the genomics revolution, bioinformatics has never been so popular. Many researchers have investigated with great success the use of evolutionary computation in bioinformatics [19] for example in the field of protein folding or determining genome sequences. In this paper, instead of using evolutionary computation as a way to provide new and innovative solutions to complex bioinformatics problems, we use genetic programming as a tool to evolve programs that are able to automatically classify research papers as dealing or not with a given protein. In a second part, we show that the attributes that are selected by the genetic programming evolved programs can be used efficiently for proteins classification.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1570049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genetic programming for protein related text classification
Since the genomics revolution, bioinformatics has never been so popular. Many researchers have investigated with great success the use of evolutionary computation in bioinformatics [19] for example in the field of protein folding or determining genome sequences. In this paper, instead of using evolutionary computation as a way to provide new and innovative solutions to complex bioinformatics problems, we use genetic programming as a tool to evolve programs that are able to automatically classify research papers as dealing or not with a given protein. In a second part, we show that the attributes that are selected by the genetic programming evolved programs can be used efficiently for proteins classification.