三维集成电路堆叠中高密度超细间距Cu-Cu键合的晶圆级下填研究

Ling Xie, S. Wickramanayaka, Booyang Jung, J. Li, Lim Jung-kai, Daniel Ismael
{"title":"三维集成电路堆叠中高密度超细间距Cu-Cu键合的晶圆级下填研究","authors":"Ling Xie, S. Wickramanayaka, Booyang Jung, J. Li, Lim Jung-kai, Daniel Ismael","doi":"10.1109/EPTC.2014.7028388","DOIUrl":null,"url":null,"abstract":"A wafer level under-fill (WLUF) process for ultra-fine Cu-Cu bonding is developed. Under-fill is applied as pre-applied under-fill then planarized the surface. The methodology used for surface planarization (bit grinding) and surface treatment (H2 plasma) are fond to be important in the surface preparation and activation. Underfill material needs to have sufficient hardness and adhesion to the wafer to survive during bit grinding process. Again, it must not get cured during plasma treatments before bonding is carried out. DOE is carried out with four different WLUF materials and one capillary under-fill material. Tests were carried out with a test vehicle having 5 um diameter and 10 um pitch. Results showed only one material could pass through all those requirements.","PeriodicalId":115713,"journal":{"name":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Wafer level underfill study for high density ultra-fine pitch Cu-Cu bonding for 3D IC stacking\",\"authors\":\"Ling Xie, S. Wickramanayaka, Booyang Jung, J. Li, Lim Jung-kai, Daniel Ismael\",\"doi\":\"10.1109/EPTC.2014.7028388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wafer level under-fill (WLUF) process for ultra-fine Cu-Cu bonding is developed. Under-fill is applied as pre-applied under-fill then planarized the surface. The methodology used for surface planarization (bit grinding) and surface treatment (H2 plasma) are fond to be important in the surface preparation and activation. Underfill material needs to have sufficient hardness and adhesion to the wafer to survive during bit grinding process. Again, it must not get cured during plasma treatments before bonding is carried out. DOE is carried out with four different WLUF materials and one capillary under-fill material. Tests were carried out with a test vehicle having 5 um diameter and 10 um pitch. Results showed only one material could pass through all those requirements.\",\"PeriodicalId\":115713,\"journal\":{\"name\":\"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC.2014.7028388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2014.7028388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种晶圆级欠填充(WLUF)超细Cu-Cu键合工艺。下填充作为预应用的下填充,然后将表面平面化。用于表面磨平(钻头磨削)和表面处理(H2等离子体)的方法在表面制备和活化中很重要。下填料需要有足够的硬度和对晶圆的附着力,才能在钻头研磨过程中存活下来。同样,在进行粘合之前,它不能在等离子体处理期间被固化。用四种不同的WLUF材料和一种毛细管下填充材料进行了DOE试验。试验是用直径5微米、节距10微米的试验车辆进行的。结果表明,只有一种材料可以满足所有这些要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wafer level underfill study for high density ultra-fine pitch Cu-Cu bonding for 3D IC stacking
A wafer level under-fill (WLUF) process for ultra-fine Cu-Cu bonding is developed. Under-fill is applied as pre-applied under-fill then planarized the surface. The methodology used for surface planarization (bit grinding) and surface treatment (H2 plasma) are fond to be important in the surface preparation and activation. Underfill material needs to have sufficient hardness and adhesion to the wafer to survive during bit grinding process. Again, it must not get cured during plasma treatments before bonding is carried out. DOE is carried out with four different WLUF materials and one capillary under-fill material. Tests were carried out with a test vehicle having 5 um diameter and 10 um pitch. Results showed only one material could pass through all those requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of the height of Carbon Nanotubes on hot switching of Au/Cr-Au/MWCNT contact pairs Laminating thin glass onto glass carrier to eliminate grinding and bonding process for glass interposer A robust chip capacitor for video band width in RF power amplifiers Chip scale package with low cost substrate evaluation and characterization Methodology for more accurate assessment of heat loss in microchannel flow boiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1