新一代设计技术协同优化(DTCO):机器学习辅助建模框架

Zhe Zhang, Runsheng Wang, Cheng Chen, Qianqian Huang, Yangyuan Wang, Cheng Hu, Dehuang Wu, Joddy W. Wang, Ru Huang
{"title":"新一代设计技术协同优化(DTCO):机器学习辅助建模框架","authors":"Zhe Zhang, Runsheng Wang, Cheng Chen, Qianqian Huang, Yangyuan Wang, Cheng Hu, Dehuang Wu, Joddy W. Wang, Ru Huang","doi":"10.23919/SNW.2019.8782897","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a machine-learning assisted modeling framework in design-technology co-optimization (DTCO) flow. Neural network (NN) based surrogate model is used as an alternative of compact model of new devices without prior knowledge of device physics to predict device and circuit electrical characteristics. This modeling framework is demonstrated and verified in FinFET with high predicted accuracy in device and circuit level. Details about the data handling and prediction results are discussed. Moreover, same framework is applied to new mechanism device tunnel FET (TFET) to predict device and circuit characteristics. This work provides new modeling method for DTCO flow.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"New-Generation Design-Technology Co-Optimization (DTCO): Machine-Learning Assisted Modeling Framework\",\"authors\":\"Zhe Zhang, Runsheng Wang, Cheng Chen, Qianqian Huang, Yangyuan Wang, Cheng Hu, Dehuang Wu, Joddy W. Wang, Ru Huang\",\"doi\":\"10.23919/SNW.2019.8782897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a machine-learning assisted modeling framework in design-technology co-optimization (DTCO) flow. Neural network (NN) based surrogate model is used as an alternative of compact model of new devices without prior knowledge of device physics to predict device and circuit electrical characteristics. This modeling framework is demonstrated and verified in FinFET with high predicted accuracy in device and circuit level. Details about the data handling and prediction results are discussed. Moreover, same framework is applied to new mechanism device tunnel FET (TFET) to predict device and circuit characteristics. This work provides new modeling method for DTCO flow.\",\"PeriodicalId\":170513,\"journal\":{\"name\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"255 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SNW.2019.8782897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2019.8782897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在本文中,我们提出了一种机器学习辅助的设计-技术协同优化(DTCO)流程建模框架。基于神经网络(NN)的替代模型是在不具备器件物理先验知识的情况下,替代紧凑的新器件模型来预测器件和电路的电气特性。该建模框架在FinFET中得到了验证,在器件和电路级具有较高的预测精度。详细讨论了数据处理和预测结果。此外,将相同的框架应用于新机制器件隧道场效应管(TFET),以预测器件和电路的特性。该工作为dco流的建模提供了新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New-Generation Design-Technology Co-Optimization (DTCO): Machine-Learning Assisted Modeling Framework
In this paper, we propose a machine-learning assisted modeling framework in design-technology co-optimization (DTCO) flow. Neural network (NN) based surrogate model is used as an alternative of compact model of new devices without prior knowledge of device physics to predict device and circuit electrical characteristics. This modeling framework is demonstrated and verified in FinFET with high predicted accuracy in device and circuit level. Details about the data handling and prediction results are discussed. Moreover, same framework is applied to new mechanism device tunnel FET (TFET) to predict device and circuit characteristics. This work provides new modeling method for DTCO flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Charge Effects on Semiconductor-Metal Phase Transition in Mono-layer MoTe2 Reduced RTN Amplitude and Single Trap induced Variation for Ferroelectric FinFET by Substrate Doping Optimization Atomistic Study of Transport Characteristics in Sub-1nm Ultra-narrow Molybdenum Disulfide (MoS2) Nanoribbon Field Effect Transistors Si Electron Nano-Aspirator towards Emerging Hydro-Electronics 3D Heterogeneous Integration with 2D Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1