高碳倍率下锂离子充电状态的多步预测模型

Asadullah Khalid, Aditya Sundararajan, A. Sarwat
{"title":"高碳倍率下锂离子充电状态的多步预测模型","authors":"Asadullah Khalid, Aditya Sundararajan, A. Sarwat","doi":"10.1109/EEEIC.2019.8783692","DOIUrl":null,"url":null,"abstract":"Energy Storage or battery management systems for Li-ion batteries require accurate prediction of state of charge (SOC). Existing methods predict SOC for a given charging/discharging rate (C-rate) using experimentally obtained values of cell current and voltage. However, in scenarios where there is a lack of such historical data, these methods perform poorly because of inadequate training data. This paper proposes a combinatorial model involving autoregressive integrated moving average (ARIMA) and a nonlinear autoregressive network with exogenous inputs (NARX-net). ARIMA is used to first predict cell current and cell voltage for the desired higher C-rate (C/10) only using the voltage and current from historical, lower C-rates (C/2 to C/8) of an actual 3.7V, 3.5Ah Li-ion battery. The NARX-net is used to predict SOC using the voltage and current values predicted by ARIMA. To train NARX-net, four algorithms are used, and their performance is evaluated by comparing the predicted SOC values with those obtained experimentally for C/10. Results show that the proposed data-driven model is effective at predicting SOC for Li-ion batteries given some preliminary historical data on current and voltage of previous, lower C-rates.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Multi-Step Predictive Model to Estimate Li-Ion State of Charge for Higher C-Rates\",\"authors\":\"Asadullah Khalid, Aditya Sundararajan, A. Sarwat\",\"doi\":\"10.1109/EEEIC.2019.8783692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy Storage or battery management systems for Li-ion batteries require accurate prediction of state of charge (SOC). Existing methods predict SOC for a given charging/discharging rate (C-rate) using experimentally obtained values of cell current and voltage. However, in scenarios where there is a lack of such historical data, these methods perform poorly because of inadequate training data. This paper proposes a combinatorial model involving autoregressive integrated moving average (ARIMA) and a nonlinear autoregressive network with exogenous inputs (NARX-net). ARIMA is used to first predict cell current and cell voltage for the desired higher C-rate (C/10) only using the voltage and current from historical, lower C-rates (C/2 to C/8) of an actual 3.7V, 3.5Ah Li-ion battery. The NARX-net is used to predict SOC using the voltage and current values predicted by ARIMA. To train NARX-net, four algorithms are used, and their performance is evaluated by comparing the predicted SOC values with those obtained experimentally for C/10. Results show that the proposed data-driven model is effective at predicting SOC for Li-ion batteries given some preliminary historical data on current and voltage of previous, lower C-rates.\",\"PeriodicalId\":422977,\"journal\":{\"name\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"208 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2019.8783692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2019.8783692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

锂离子电池的储能或电池管理系统需要准确预测充电状态(SOC)。现有的方法是利用实验获得的电池电流和电压值来预测给定充放电率(C-rate)下的SOC。然而,在缺乏此类历史数据的情况下,由于训练数据不足,这些方法的性能很差。本文提出了一个包含自回归积分移动平均(ARIMA)和外生输入非线性自回归网络(NARX-net)的组合模型。ARIMA首先使用实际3.7V, 3.5Ah锂离子电池的历史较低C率(C/2至C/8)的电压和电流来预测所需的更高C率(C/10)的电池电流和电池电压。NARX-net使用ARIMA预测的电压和电流值来预测SOC。为了训练NARX-net,使用了四种算法,并通过将预测SOC值与C/10的实验值进行比较,评估了它们的性能。结果表明,该数据驱动模型可以有效地预测锂离子电池的荷电状态(SOC),并给出了之前较低c率下的电流和电压的初步历史数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Step Predictive Model to Estimate Li-Ion State of Charge for Higher C-Rates
Energy Storage or battery management systems for Li-ion batteries require accurate prediction of state of charge (SOC). Existing methods predict SOC for a given charging/discharging rate (C-rate) using experimentally obtained values of cell current and voltage. However, in scenarios where there is a lack of such historical data, these methods perform poorly because of inadequate training data. This paper proposes a combinatorial model involving autoregressive integrated moving average (ARIMA) and a nonlinear autoregressive network with exogenous inputs (NARX-net). ARIMA is used to first predict cell current and cell voltage for the desired higher C-rate (C/10) only using the voltage and current from historical, lower C-rates (C/2 to C/8) of an actual 3.7V, 3.5Ah Li-ion battery. The NARX-net is used to predict SOC using the voltage and current values predicted by ARIMA. To train NARX-net, four algorithms are used, and their performance is evaluated by comparing the predicted SOC values with those obtained experimentally for C/10. Results show that the proposed data-driven model is effective at predicting SOC for Li-ion batteries given some preliminary historical data on current and voltage of previous, lower C-rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Development Process and User-centric Data Driven Design for an Integrated Energy System Machine Learning for Agile and Self-Adaptive Congestion Management in Active Distribution Networks Full Bridge LLC Resonant Three-Phase Interleaved Multi Converter For HV Applications Standalone PV-BES-DG Based Microgrid with Power Quality Improvements Performance of Neural Network Based Controllers and ΔΣ-Based PID Controllers for Networked Control Systems: A Comparative Investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1