A. Raisemche, A. Chaibet, M. Boukhnifer, D. Diallo
{"title":"采用次优滑模观测器的机械传感器FTC用于电动汽车感应电机驱动","authors":"A. Raisemche, A. Chaibet, M. Boukhnifer, D. Diallo","doi":"10.1109/SSD.2016.7473762","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an experimental study for hybrid voting algorithm based on observer and robust control design for two mechanical sensor faults. The proposed strategy is applied for the induction motor speed drive of electrical vehicle powertrain. To adopt the best performance method for electrical vehicle application, we illustrate the effectiveness of the hybrid voting algorithm approach with the New European Driving Cycle (NEDC) speed profile. The experimental results demonstrate the effectiveness of the proposed Input/Output FTC architecture.","PeriodicalId":149580,"journal":{"name":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mechanical sensor FTC using sub-optimal sliding mode observer for electrical vehicle induction motor drive\",\"authors\":\"A. Raisemche, A. Chaibet, M. Boukhnifer, D. Diallo\",\"doi\":\"10.1109/SSD.2016.7473762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an experimental study for hybrid voting algorithm based on observer and robust control design for two mechanical sensor faults. The proposed strategy is applied for the induction motor speed drive of electrical vehicle powertrain. To adopt the best performance method for electrical vehicle application, we illustrate the effectiveness of the hybrid voting algorithm approach with the New European Driving Cycle (NEDC) speed profile. The experimental results demonstrate the effectiveness of the proposed Input/Output FTC architecture.\",\"PeriodicalId\":149580,\"journal\":{\"name\":\"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD.2016.7473762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2016.7473762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanical sensor FTC using sub-optimal sliding mode observer for electrical vehicle induction motor drive
In this paper, we propose an experimental study for hybrid voting algorithm based on observer and robust control design for two mechanical sensor faults. The proposed strategy is applied for the induction motor speed drive of electrical vehicle powertrain. To adopt the best performance method for electrical vehicle application, we illustrate the effectiveness of the hybrid voting algorithm approach with the New European Driving Cycle (NEDC) speed profile. The experimental results demonstrate the effectiveness of the proposed Input/Output FTC architecture.