任务并行性的自适应截止

A. Duran, J. Corbalán, E. Ayguadé
{"title":"任务并行性的自适应截止","authors":"A. Duran, J. Corbalán, E. Ayguadé","doi":"10.1145/1413370.1413407","DOIUrl":null,"url":null,"abstract":"In task parallel languages, an important factor for achieving a good performance is the use of a cut-off technique to reduce the number of tasks created. Using a cut-off to avoid an excessive number of tasks helps the runtime system to reduce the total overhead associated with task creation, particularlt if the tasks are fine grain. Unfortunately, the best cut-off technique its usually dependent on the application structure or even the input data of the application. We propose a new cut-off technique that, using information from the application collected at runtime, decides which tasks should be pruned to improve the performance of the application. This technique does not rely on the programmer to determine the cut-off technique that is best suited for the application. We have implemented this cut-off in the context of the new OpenMP tasking model. Our evaluation, with a variety of applications, shows that our adaptive cut-off is able to make good decisions and most of the time matches the optimal cut-off that could be set by hand by a programmer.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":"{\"title\":\"An adaptive cut-off for task parallelism\",\"authors\":\"A. Duran, J. Corbalán, E. Ayguadé\",\"doi\":\"10.1145/1413370.1413407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In task parallel languages, an important factor for achieving a good performance is the use of a cut-off technique to reduce the number of tasks created. Using a cut-off to avoid an excessive number of tasks helps the runtime system to reduce the total overhead associated with task creation, particularlt if the tasks are fine grain. Unfortunately, the best cut-off technique its usually dependent on the application structure or even the input data of the application. We propose a new cut-off technique that, using information from the application collected at runtime, decides which tasks should be pruned to improve the performance of the application. This technique does not rely on the programmer to determine the cut-off technique that is best suited for the application. We have implemented this cut-off in the context of the new OpenMP tasking model. Our evaluation, with a variety of applications, shows that our adaptive cut-off is able to make good decisions and most of the time matches the optimal cut-off that could be set by hand by a programmer.\",\"PeriodicalId\":230761,\"journal\":{\"name\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"112\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1413370.1413407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1413370.1413407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

摘要

在任务并行语言中,实现良好性能的一个重要因素是使用截止技术来减少创建的任务数量。使用截止值来避免过多的任务,有助于运行时系统减少与任务创建相关的总开销,特别是在任务是细粒度的情况下。不幸的是,最好的截止技术通常依赖于应用程序的结构,甚至是应用程序的输入数据。我们提出了一种新的截止技术,该技术使用在运行时收集的应用程序信息来决定应该修剪哪些任务以提高应用程序的性能。该技术不依赖于程序员来确定最适合应用程序的截止技术。我们已经在新的OpenMP任务模型的上下文中实现了这个截止。我们对各种应用程序的评估表明,我们的自适应截止能够做出良好的决策,并且大多数情况下与程序员手动设置的最佳截止相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An adaptive cut-off for task parallelism
In task parallel languages, an important factor for achieving a good performance is the use of a cut-off technique to reduce the number of tasks created. Using a cut-off to avoid an excessive number of tasks helps the runtime system to reduce the total overhead associated with task creation, particularlt if the tasks are fine grain. Unfortunately, the best cut-off technique its usually dependent on the application structure or even the input data of the application. We propose a new cut-off technique that, using information from the application collected at runtime, decides which tasks should be pruned to improve the performance of the application. This technique does not rely on the programmer to determine the cut-off technique that is best suited for the application. We have implemented this cut-off in the context of the new OpenMP tasking model. Our evaluation, with a variety of applications, shows that our adaptive cut-off is able to make good decisions and most of the time matches the optimal cut-off that could be set by hand by a programmer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient auction-based grid reservations using dynamic programming Scientific application-based performance comparison of SGI Altix 4700, IBM POWER5+, and SGI ICE 8200 supercomputers Nimrod/K: Towards massively parallel dynamic Grid workflows Global Trees: A framework for linked data structures on distributed memory parallel systems Bandwidth intensive 3-D FFT kernel for GPUs using CUDA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1