一种基于线性支持向量回归的特征提取方法

Yu Zhefu, Huibiao Lu, Chuanying Jia
{"title":"一种基于线性支持向量回归的特征提取方法","authors":"Yu Zhefu, Huibiao Lu, Chuanying Jia","doi":"10.1109/FBIE.2008.66","DOIUrl":null,"url":null,"abstract":"At first, a linear support vector regression feature extraction algorithm was introduced concisely. Then two improvements were presented in order that a simply explicit nonlinear regress function can be gotten easily by SVR feature extraction. One improvement was to decrease the dimensions of input space at the expense of regression function accuracy. Another improvement was to map the linear space to polynomial space corresponding to input features. The order of polynomial space depends on practical applications. Experimental result showed the efficiency of the improvements.","PeriodicalId":415908,"journal":{"name":"2008 International Seminar on Future BioMedical Information Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Feature Extraction Based on Linear Support Vector Regression\",\"authors\":\"Yu Zhefu, Huibiao Lu, Chuanying Jia\",\"doi\":\"10.1109/FBIE.2008.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At first, a linear support vector regression feature extraction algorithm was introduced concisely. Then two improvements were presented in order that a simply explicit nonlinear regress function can be gotten easily by SVR feature extraction. One improvement was to decrease the dimensions of input space at the expense of regression function accuracy. Another improvement was to map the linear space to polynomial space corresponding to input features. The order of polynomial space depends on practical applications. Experimental result showed the efficiency of the improvements.\",\"PeriodicalId\":415908,\"journal\":{\"name\":\"2008 International Seminar on Future BioMedical Information Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Seminar on Future BioMedical Information Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FBIE.2008.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future BioMedical Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FBIE.2008.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

首先简要介绍了一种线性支持向量回归特征提取算法。在此基础上提出了两种改进方法,以便通过SVR特征提取得到简单显式的非线性回归函数。一种改进是以牺牲回归函数的精度为代价来降低输入空间的维数。另一个改进是将线性空间映射到与输入特征相对应的多项式空间。多项式空间的阶取决于实际应用。实验结果表明了改进的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Feature Extraction Based on Linear Support Vector Regression
At first, a linear support vector regression feature extraction algorithm was introduced concisely. Then two improvements were presented in order that a simply explicit nonlinear regress function can be gotten easily by SVR feature extraction. One improvement was to decrease the dimensions of input space at the expense of regression function accuracy. Another improvement was to map the linear space to polynomial space corresponding to input features. The order of polynomial space depends on practical applications. Experimental result showed the efficiency of the improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realization and Application Research of BP Neural Network Based on MATLAB Design of Intelligent Guiding Equipment Based on Man-Machine Interaction and Multi-sensor Technique Modeling of the Combustion Optimizing Based on Fuzzy Neural Networks Research of OFDM System for PLC in UCM Based on Precoder Algorithm A New General Binary Image Watermarking in DCT Domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1