情境感知关节活动和时间预测的深度模型

Yile Chen, Cheng Long, G. Cong, Chenliang Li
{"title":"情境感知关节活动和时间预测的深度模型","authors":"Yile Chen, Cheng Long, G. Cong, Chenliang Li","doi":"10.1145/3336191.3371837","DOIUrl":null,"url":null,"abstract":"Mobility prediction, which is to predict where a user will arrive based on the user's historical mobility records, has attracted much attention. We argue that it is more useful to know not only where but also when a user will arrive next in many scenarios such as targeted advertising and taxi service. In this paper, we propose a novel context-aware deep model called DeepJMT for jointly performing mobility prediction (to know where) and time prediction (to know when). The DeepJMT model consists of (1) a hierarchical recurrent neural network (RNN) based sequential dependency encoder, which is more capable of capturing a user's mobility regularities and temporal patterns compared to vanilla RNN based models; (2) a spatial context extractor and a periodicity context extractor to extract location semantics and the user's periodicity, respectively; and (3) a co-attention based social & temporal context extractor which could extract the mobility and temporal evidence from social relationships. Experiments conducted on three real-world datasets show that DeepJMT outperforms the state-of-the-art mobility prediction and time prediction methods.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Context-aware Deep Model for Joint Mobility and Time Prediction\",\"authors\":\"Yile Chen, Cheng Long, G. Cong, Chenliang Li\",\"doi\":\"10.1145/3336191.3371837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobility prediction, which is to predict where a user will arrive based on the user's historical mobility records, has attracted much attention. We argue that it is more useful to know not only where but also when a user will arrive next in many scenarios such as targeted advertising and taxi service. In this paper, we propose a novel context-aware deep model called DeepJMT for jointly performing mobility prediction (to know where) and time prediction (to know when). The DeepJMT model consists of (1) a hierarchical recurrent neural network (RNN) based sequential dependency encoder, which is more capable of capturing a user's mobility regularities and temporal patterns compared to vanilla RNN based models; (2) a spatial context extractor and a periodicity context extractor to extract location semantics and the user's periodicity, respectively; and (3) a co-attention based social & temporal context extractor which could extract the mobility and temporal evidence from social relationships. Experiments conducted on three real-world datasets show that DeepJMT outperforms the state-of-the-art mobility prediction and time prediction methods.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

移动预测是根据用户的历史移动记录来预测用户将到达的地方,这引起了人们的广泛关注。我们认为,在定向广告和出租车服务等许多场景中,不仅知道用户下一个到达的地点,而且知道用户下一个到达的时间更有用。在本文中,我们提出了一种新的上下文感知深度模型,称为DeepJMT,用于联合执行移动性预测(知道在哪里)和时间预测(知道何时)。DeepJMT模型由(1)基于层次递归神经网络(RNN)的顺序依赖编码器组成,与基于普通RNN的模型相比,该编码器更能捕获用户的移动规律和时间模式;(2)空间上下文提取器和周期性上下文提取器分别提取位置语义和用户周期性;(3)基于共同注意的社会和时间语境提取器,可以从社会关系中提取流动性和时间证据。在三个真实数据集上进行的实验表明,DeepJMT优于最先进的移动性预测和时间预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Context-aware Deep Model for Joint Mobility and Time Prediction
Mobility prediction, which is to predict where a user will arrive based on the user's historical mobility records, has attracted much attention. We argue that it is more useful to know not only where but also when a user will arrive next in many scenarios such as targeted advertising and taxi service. In this paper, we propose a novel context-aware deep model called DeepJMT for jointly performing mobility prediction (to know where) and time prediction (to know when). The DeepJMT model consists of (1) a hierarchical recurrent neural network (RNN) based sequential dependency encoder, which is more capable of capturing a user's mobility regularities and temporal patterns compared to vanilla RNN based models; (2) a spatial context extractor and a periodicity context extractor to extract location semantics and the user's periodicity, respectively; and (3) a co-attention based social & temporal context extractor which could extract the mobility and temporal evidence from social relationships. Experiments conducted on three real-world datasets show that DeepJMT outperforms the state-of-the-art mobility prediction and time prediction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1