基于离散小波变换前导和集成学习方法的脑电记录轻度认知障碍自动检测

Afrah Said, H. Göker
{"title":"基于离散小波变换前导和集成学习方法的脑电记录轻度认知障碍自动检测","authors":"Afrah Said, H. Göker","doi":"10.24012/dumf.1227520","DOIUrl":null,"url":null,"abstract":"Mild Cognitive Impairment (MCI) is a risk of cognitive decline, commonly referred to as a transitional stage between normal cognition and dementia. Patients with MCI typically progress to Alzheimer's disease (AD), which causes cognitive deficits such as deterioration of their thinking abilities. This study aims to detect MCI patients using electroencephalography (EEG) signals. The EEG dataset used in this study consists of EEG signals recorded from 18 MCI and 16 control groups. Firstly, EEG signals were denoised using multiscale principal component analysis (multiscale PCA). Then, 36 features were extracted from the EEG signals using the discrete wavelet transform leader (DWT leader) feature extraction method. Finally, using the extracted feature vectors, control groups, and MCI groups were classified by ensemble learning algorithms. As a result, AdaBoostM1 algorithm has the highest success with 93.50% accuracy, 93.27% sensitivity, 93.75% specificity, 94.38% precision, 93.82% f1-score, and 86.97% Matthews correlation coefficient (MCC). By achieving quite satisfactory accuracy, this study proves that the ensemble learning algorithm can also be used for MCI detection.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Detection of Mild Cognitive Impairment from EEG Recordings Using Discrete Wavelet Transform Leader and Ensemble Learning Methods\",\"authors\":\"Afrah Said, H. Göker\",\"doi\":\"10.24012/dumf.1227520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mild Cognitive Impairment (MCI) is a risk of cognitive decline, commonly referred to as a transitional stage between normal cognition and dementia. Patients with MCI typically progress to Alzheimer's disease (AD), which causes cognitive deficits such as deterioration of their thinking abilities. This study aims to detect MCI patients using electroencephalography (EEG) signals. The EEG dataset used in this study consists of EEG signals recorded from 18 MCI and 16 control groups. Firstly, EEG signals were denoised using multiscale principal component analysis (multiscale PCA). Then, 36 features were extracted from the EEG signals using the discrete wavelet transform leader (DWT leader) feature extraction method. Finally, using the extracted feature vectors, control groups, and MCI groups were classified by ensemble learning algorithms. As a result, AdaBoostM1 algorithm has the highest success with 93.50% accuracy, 93.27% sensitivity, 93.75% specificity, 94.38% precision, 93.82% f1-score, and 86.97% Matthews correlation coefficient (MCC). By achieving quite satisfactory accuracy, this study proves that the ensemble learning algorithm can also be used for MCI detection.\",\"PeriodicalId\":158576,\"journal\":{\"name\":\"DÜMF Mühendislik Dergisi\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DÜMF Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24012/dumf.1227520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1227520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

轻度认知障碍(MCI)是一种认知能力下降的风险,通常被称为正常认知和痴呆之间的过渡阶段。患有轻度认知障碍的患者通常会发展为阿尔茨海默病(AD),这种疾病会导致认知缺陷,比如思维能力的恶化。本研究旨在利用脑电图(EEG)信号检测MCI患者。本研究使用的EEG数据集由18个MCI组和16个对照组的EEG信号组成。首先,对脑电信号进行多尺度主成分分析(multiscale principal component analysis, PCA)去噪。然后,采用离散小波变换领袖(DWT领袖)特征提取方法从脑电信号中提取36个特征;最后,利用提取的特征向量,采用集成学习算法对对照组和MCI组进行分类。结果表明,AdaBoostM1算法准确率为93.50%,灵敏度为93.27%,特异性为93.75%,精密度为94.38%,f1评分为93.82%,马修斯相关系数(MCC)为86.97%,成功率最高。通过获得相当满意的精度,本研究证明了集成学习算法也可以用于MCI检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Detection of Mild Cognitive Impairment from EEG Recordings Using Discrete Wavelet Transform Leader and Ensemble Learning Methods
Mild Cognitive Impairment (MCI) is a risk of cognitive decline, commonly referred to as a transitional stage between normal cognition and dementia. Patients with MCI typically progress to Alzheimer's disease (AD), which causes cognitive deficits such as deterioration of their thinking abilities. This study aims to detect MCI patients using electroencephalography (EEG) signals. The EEG dataset used in this study consists of EEG signals recorded from 18 MCI and 16 control groups. Firstly, EEG signals were denoised using multiscale principal component analysis (multiscale PCA). Then, 36 features were extracted from the EEG signals using the discrete wavelet transform leader (DWT leader) feature extraction method. Finally, using the extracted feature vectors, control groups, and MCI groups were classified by ensemble learning algorithms. As a result, AdaBoostM1 algorithm has the highest success with 93.50% accuracy, 93.27% sensitivity, 93.75% specificity, 94.38% precision, 93.82% f1-score, and 86.97% Matthews correlation coefficient (MCC). By achieving quite satisfactory accuracy, this study proves that the ensemble learning algorithm can also be used for MCI detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1