利用最大熵法滤除脑电数据中的高频噪声

C. Tseng, Hc Lee
{"title":"利用最大熵法滤除脑电数据中的高频噪声","authors":"C. Tseng, Hc Lee","doi":"10.1063/1.2821286","DOIUrl":null,"url":null,"abstract":"We propose a maximum entropy (ME) based approach to smooth noise not only in data but also to noise amplified by second order derivative calculation of the data especially for electroencephalography (EEG) studies. The approach includes two steps, applying method of ME to generate a family of filters and minimizing noise variance after applying these filters on data selects the preferred one within the family. We examine performance of the ME filter through frequency and noise variance analysis and compare it with other well known filters developed in the EEG studies. The results show the ME filters to outperform others. Although we only demonstrate a filter design especially for second order derivative of EEG data, these studies still shed an informatic approach of systematically designing a filter for specific purposes.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filter Out High Frequency Noise in EEG Data Using The Method of Maximum Entropy\",\"authors\":\"C. Tseng, Hc Lee\",\"doi\":\"10.1063/1.2821286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a maximum entropy (ME) based approach to smooth noise not only in data but also to noise amplified by second order derivative calculation of the data especially for electroencephalography (EEG) studies. The approach includes two steps, applying method of ME to generate a family of filters and minimizing noise variance after applying these filters on data selects the preferred one within the family. We examine performance of the ME filter through frequency and noise variance analysis and compare it with other well known filters developed in the EEG studies. The results show the ME filters to outperform others. Although we only demonstrate a filter design especially for second order derivative of EEG data, these studies still shed an informatic approach of systematically designing a filter for specific purposes.\",\"PeriodicalId\":119149,\"journal\":{\"name\":\"arXiv: Quantitative Methods\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.2821286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.2821286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于最大熵(ME)的方法,不仅可以平滑数据中的噪声,还可以平滑由于数据二阶导数计算而放大的噪声,特别是在脑电图(EEG)研究中。该方法包括两个步骤,首先应用ME方法生成滤波器族,然后将这些滤波器应用于数据后最小化噪声方差,在该族中选择首选滤波器。我们通过频率和噪声方差分析来检验ME滤波器的性能,并将其与脑电图研究中开发的其他知名滤波器进行比较。结果表明,ME过滤器的性能优于其他过滤器。虽然我们只展示了一种专门针对EEG数据二阶导数的滤波器设计,但这些研究仍然提供了一种针对特定目的系统设计滤波器的信息学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Filter Out High Frequency Noise in EEG Data Using The Method of Maximum Entropy
We propose a maximum entropy (ME) based approach to smooth noise not only in data but also to noise amplified by second order derivative calculation of the data especially for electroencephalography (EEG) studies. The approach includes two steps, applying method of ME to generate a family of filters and minimizing noise variance after applying these filters on data selects the preferred one within the family. We examine performance of the ME filter through frequency and noise variance analysis and compare it with other well known filters developed in the EEG studies. The results show the ME filters to outperform others. Although we only demonstrate a filter design especially for second order derivative of EEG data, these studies still shed an informatic approach of systematically designing a filter for specific purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beating temporal phase sensitivity limit in off-axis interferometry based quantitative phase microscopy A review of mass concentrations of Bramblings Fringilla montifringilla: implications for assessment of large numbers of birds Spatial Registration Evaluation of [18F]-MK6240 PET Comparison of surface thermal patterns of horses and donkeys in IRT images Utilization of 3D segmentation for measurement of pediatric brain tumor outcomes after treatment: review of available tools, step-by-step instructions, and applications to clinical practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1