基于语法引导的高效样本机器人设计自动化的潜在空间优化

Jiaheng Hu, Julian Whiman, H. Choset
{"title":"基于语法引导的高效样本机器人设计自动化的潜在空间优化","authors":"Jiaheng Hu, Julian Whiman, H. Choset","doi":"10.48550/arXiv.2209.11748","DOIUrl":null,"url":null,"abstract":"Robots have been used in all sorts of automation, and yet the design of robots remains mainly a manual task. We seek to provide design tools to automate the design of robots themselves. An important challenge in robot design automation is the large and complex design search space which grows exponentially with the number of components, making optimization difficult and sample inefficient. In this work, we present Grammar-guided Latent Space Optimization (GLSO), a framework that transforms design automation into a low-dimensional continuous optimization problem by training a graph variational autoencoder (VAE) to learn a mapping between the graph-structured design space and a continuous latent space. This transformation allows optimization to be conducted in a continuous latent space, where sample efficiency can be significantly boosted by applying algorithms such as Bayesian Optimization. GLSO guides training of the VAE using graph grammar rules and robot world space features, such that the learned latent space focus on valid robots and is easier for the optimization algorithm to explore. Importantly, the trained VAE can be reused to search for designs specialized to multiple different tasks without retraining. We evaluate GLSO by designing robots for a set of locomotion tasks in simulation, and demonstrate that our method outperforms related state-of-the-art robot design automation methods.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GLSO: Grammar-guided Latent Space Optimization for Sample-efficient Robot Design Automation\",\"authors\":\"Jiaheng Hu, Julian Whiman, H. Choset\",\"doi\":\"10.48550/arXiv.2209.11748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robots have been used in all sorts of automation, and yet the design of robots remains mainly a manual task. We seek to provide design tools to automate the design of robots themselves. An important challenge in robot design automation is the large and complex design search space which grows exponentially with the number of components, making optimization difficult and sample inefficient. In this work, we present Grammar-guided Latent Space Optimization (GLSO), a framework that transforms design automation into a low-dimensional continuous optimization problem by training a graph variational autoencoder (VAE) to learn a mapping between the graph-structured design space and a continuous latent space. This transformation allows optimization to be conducted in a continuous latent space, where sample efficiency can be significantly boosted by applying algorithms such as Bayesian Optimization. GLSO guides training of the VAE using graph grammar rules and robot world space features, such that the learned latent space focus on valid robots and is easier for the optimization algorithm to explore. Importantly, the trained VAE can be reused to search for designs specialized to multiple different tasks without retraining. We evaluate GLSO by designing robots for a set of locomotion tasks in simulation, and demonstrate that our method outperforms related state-of-the-art robot design automation methods.\",\"PeriodicalId\":273870,\"journal\":{\"name\":\"Conference on Robot Learning\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Robot Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.11748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.11748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器人已被用于各种自动化,但机器人的设计仍然主要是一项手工任务。我们寻求提供设计工具来自动化机器人本身的设计。机器人设计自动化面临的一个重要挑战是庞大而复杂的设计搜索空间,该空间随着部件数量呈指数级增长,使得优化变得困难且采样效率低下。在这项工作中,我们提出了语法引导的潜在空间优化(GLSO),这是一个框架,通过训练图变分自编码器(VAE)来学习图结构设计空间与连续潜在空间之间的映射,将设计自动化转化为低维连续优化问题。这种转换允许在连续潜在空间中进行优化,在连续潜在空间中,通过应用贝叶斯优化等算法可以显著提高样本效率。GLSO使用图语法规则和机器人世界空间特征指导VAE的训练,使得学习到的潜在空间集中在有效的机器人上,更易于优化算法探索。重要的是,经过训练的VAE可以被重用,以搜索专门用于多个不同任务的设计,而无需再训练。我们通过在模拟中设计一系列运动任务的机器人来评估GLSO,并证明我们的方法优于相关的最先进的机器人设计自动化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GLSO: Grammar-guided Latent Space Optimization for Sample-efficient Robot Design Automation
Robots have been used in all sorts of automation, and yet the design of robots remains mainly a manual task. We seek to provide design tools to automate the design of robots themselves. An important challenge in robot design automation is the large and complex design search space which grows exponentially with the number of components, making optimization difficult and sample inefficient. In this work, we present Grammar-guided Latent Space Optimization (GLSO), a framework that transforms design automation into a low-dimensional continuous optimization problem by training a graph variational autoencoder (VAE) to learn a mapping between the graph-structured design space and a continuous latent space. This transformation allows optimization to be conducted in a continuous latent space, where sample efficiency can be significantly boosted by applying algorithms such as Bayesian Optimization. GLSO guides training of the VAE using graph grammar rules and robot world space features, such that the learned latent space focus on valid robots and is easier for the optimization algorithm to explore. Importantly, the trained VAE can be reused to search for designs specialized to multiple different tasks without retraining. We evaluate GLSO by designing robots for a set of locomotion tasks in simulation, and demonstrate that our method outperforms related state-of-the-art robot design automation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MResT: Multi-Resolution Sensing for Real-Time Control with Vision-Language Models Lidar Line Selection with Spatially-Aware Shapley Value for Cost-Efficient Depth Completion Safe Robot Learning in Assistive Devices through Neural Network Repair COACH: Cooperative Robot Teaching Learning Goal-Conditioned Policies Offline with Self-Supervised Reward Shaping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1