基于压力瞬态分析的故障泄漏检测

A. Shchipanov, L. Kollbotn, R. Berenblyum
{"title":"基于压力瞬态分析的故障泄漏检测","authors":"A. Shchipanov, L. Kollbotn, R. Berenblyum","doi":"10.3997/2214-4609.201802990","DOIUrl":null,"url":null,"abstract":"Leakage of reservoir fluids from injection site, e.g. through faults, is one of the key risks associated with long-term CO2 geological storage. Leakage monitoring technologies applied at different levels: in-situ, groundwater and surface, are necessary to ensure safe CO2 storage. Development and testing of the monitoring technologies is an objective of the ENOS project. In this paper, in-situ leakage detection from analysis of well bottom hole pressure is discussed. Modern CO2 injection wells are usually equipped with Permanent Downhole Gauges (PDGs), providing pressure measurements during the whole well life-span including injection and shut-in periods. A practical way to apply Pressure Transient Analysis (PTA) to such measurements for leakage detection is in the focus. A simulated well test of near-fault water injection into saline aquifer was employed to evaluate capabilities of PTA in detecting leakage through the fault. These mechanistic reservoir simulations were followed by similar simulations on an actual geological setting. A reservoir segment of the potential LBr-1 injection site containing a fault was used to demonstrate PTA-based leakage detection under actual geological conditions. Both simulation studies have confirmed that the PTA-based detection may be a useful component of the multi-level leakage monitoring technologies relying on readily available facilities (PDGs).","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fault Leakage Detection From Pressure Transient Analysis\",\"authors\":\"A. Shchipanov, L. Kollbotn, R. Berenblyum\",\"doi\":\"10.3997/2214-4609.201802990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leakage of reservoir fluids from injection site, e.g. through faults, is one of the key risks associated with long-term CO2 geological storage. Leakage monitoring technologies applied at different levels: in-situ, groundwater and surface, are necessary to ensure safe CO2 storage. Development and testing of the monitoring technologies is an objective of the ENOS project. In this paper, in-situ leakage detection from analysis of well bottom hole pressure is discussed. Modern CO2 injection wells are usually equipped with Permanent Downhole Gauges (PDGs), providing pressure measurements during the whole well life-span including injection and shut-in periods. A practical way to apply Pressure Transient Analysis (PTA) to such measurements for leakage detection is in the focus. A simulated well test of near-fault water injection into saline aquifer was employed to evaluate capabilities of PTA in detecting leakage through the fault. These mechanistic reservoir simulations were followed by similar simulations on an actual geological setting. A reservoir segment of the potential LBr-1 injection site containing a fault was used to demonstrate PTA-based leakage detection under actual geological conditions. Both simulation studies have confirmed that the PTA-based detection may be a useful component of the multi-level leakage monitoring technologies relying on readily available facilities (PDGs).\",\"PeriodicalId\":254996,\"journal\":{\"name\":\"Fifth CO2 Geological Storage Workshop\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth CO2 Geological Storage Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201802990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth CO2 Geological Storage Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201802990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

油藏流体从注入地点泄漏,例如通过断层,是与长期二氧化碳地质储存相关的主要风险之一。泄漏监测技术应用于不同层面:原位、地下水和地表,是确保CO2安全储存的必要条件。监测技术的开发和测试是ENOS项目的一个目标。本文讨论了利用井底压力分析进行现场泄漏检测的方法。现代CO2注水井通常配备永久性井下压力表(PDGs),在整个井寿命期间(包括注入和关井期间)提供压力测量。一种实用的方法,应用压力瞬变分析(PTA)的测量泄漏检测是重点。通过模拟咸水含水层近断层注水试井,评价了PTA检测断层渗漏的能力。这些机理油藏模拟之后,在实际地质环境中进行了类似的模拟。在实际地质条件下,利用含有断层的潜在LBr-1注入点的储层段进行了基于pta的泄漏检测。两项模拟研究都证实了基于pta的检测可能是依赖现成设施(PDGs)的多级泄漏监测技术的有用组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault Leakage Detection From Pressure Transient Analysis
Leakage of reservoir fluids from injection site, e.g. through faults, is one of the key risks associated with long-term CO2 geological storage. Leakage monitoring technologies applied at different levels: in-situ, groundwater and surface, are necessary to ensure safe CO2 storage. Development and testing of the monitoring technologies is an objective of the ENOS project. In this paper, in-situ leakage detection from analysis of well bottom hole pressure is discussed. Modern CO2 injection wells are usually equipped with Permanent Downhole Gauges (PDGs), providing pressure measurements during the whole well life-span including injection and shut-in periods. A practical way to apply Pressure Transient Analysis (PTA) to such measurements for leakage detection is in the focus. A simulated well test of near-fault water injection into saline aquifer was employed to evaluate capabilities of PTA in detecting leakage through the fault. These mechanistic reservoir simulations were followed by similar simulations on an actual geological setting. A reservoir segment of the potential LBr-1 injection site containing a fault was used to demonstrate PTA-based leakage detection under actual geological conditions. Both simulation studies have confirmed that the PTA-based detection may be a useful component of the multi-level leakage monitoring technologies relying on readily available facilities (PDGs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Resolution Modelling And Steady-State Upscaling Of Large Scale Gravity Currents In Heterogeneous Sandstone Reservoirs Assessing Potential Influence Of Nearby Hydrocarbon Production On CO2 Storage At Smeaheia Quantifying The Risk Of CO2 Leakage Along Fractures Using An Integrated Experimental, Multiscale Modelling And Monitoring Approach Using Well Operation Noise To Estimate Shear Modulus Changes From Measured Tube Waves – A Feasibility Study CO2 Injection In Low Pressure Depleted Reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1