{"title":"前馈神经网络最小结构的时间约束优化方法","authors":"Teck-Sun Tan, G. Huang","doi":"10.1109/ICONIP.2002.1202189","DOIUrl":null,"url":null,"abstract":"Huang, et al. (1996, 2002) proposed architecture selection algorithm called SEDNN to find the minimum architectures for feedforward neural networks based on the Golden section search method and the upper bounds on the number of hidden neurons, as stated in Huang (2002) and Huang et al. (1998), to be 2/spl radic/((m + 2)N) or two layered feedforward network (TLFN) and N for single layer feedforward network (SLFN) where N is the number of training samples and m is the number of output neurons. The SEDNN algorithm worked well with the assumption that time allowed for the execution of the algorithm is infinite. This paper proposed an algorithm similar to the SEDNN, but with an added time factor to cater for applications that requires results within a specified period of time.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time constrain optimal method to find the minimum architectures for feedforward neural networks\",\"authors\":\"Teck-Sun Tan, G. Huang\",\"doi\":\"10.1109/ICONIP.2002.1202189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Huang, et al. (1996, 2002) proposed architecture selection algorithm called SEDNN to find the minimum architectures for feedforward neural networks based on the Golden section search method and the upper bounds on the number of hidden neurons, as stated in Huang (2002) and Huang et al. (1998), to be 2/spl radic/((m + 2)N) or two layered feedforward network (TLFN) and N for single layer feedforward network (SLFN) where N is the number of training samples and m is the number of output neurons. The SEDNN algorithm worked well with the assumption that time allowed for the execution of the algorithm is infinite. This paper proposed an algorithm similar to the SEDNN, but with an added time factor to cater for applications that requires results within a specified period of time.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1202189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time constrain optimal method to find the minimum architectures for feedforward neural networks
Huang, et al. (1996, 2002) proposed architecture selection algorithm called SEDNN to find the minimum architectures for feedforward neural networks based on the Golden section search method and the upper bounds on the number of hidden neurons, as stated in Huang (2002) and Huang et al. (1998), to be 2/spl radic/((m + 2)N) or two layered feedforward network (TLFN) and N for single layer feedforward network (SLFN) where N is the number of training samples and m is the number of output neurons. The SEDNN algorithm worked well with the assumption that time allowed for the execution of the algorithm is infinite. This paper proposed an algorithm similar to the SEDNN, but with an added time factor to cater for applications that requires results within a specified period of time.