{"title":"人脸欺骗检测通过偏最小二乘法和低级描述符","authors":"W. R. Schwartz, A. Rocha, H. Pedrini","doi":"10.1109/IJCB.2011.6117592","DOIUrl":null,"url":null,"abstract":"Personal identity verification based on biometrics has received increasing attention since it allows reliable authentication through intrinsic characteristics, such as face, voice, iris, fingerprint, and gait. Particularly, face recognition techniques have been used in a number of applications, such as security surveillance, access control, crime solving, law enforcement, among others. To strengthen the results of verification, biometric systems must be robust against spoofing attempts with photographs or videos, which are two common ways of bypassing a face recognition system. In this paper, we describe an anti-spoofing solution based on a set of low-level feature descriptors capable of distinguishing between ‘live’ and ‘spoof’ images and videos. The proposed method explores both spatial and temporal information to learn distinctive characteristics between the two classes. Experiments conducted to validate our solution with datasets containing images and videos show results comparable to state-of-the-art approaches.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Face spoofing detection through partial least squares and low-level descriptors\",\"authors\":\"W. R. Schwartz, A. Rocha, H. Pedrini\",\"doi\":\"10.1109/IJCB.2011.6117592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal identity verification based on biometrics has received increasing attention since it allows reliable authentication through intrinsic characteristics, such as face, voice, iris, fingerprint, and gait. Particularly, face recognition techniques have been used in a number of applications, such as security surveillance, access control, crime solving, law enforcement, among others. To strengthen the results of verification, biometric systems must be robust against spoofing attempts with photographs or videos, which are two common ways of bypassing a face recognition system. In this paper, we describe an anti-spoofing solution based on a set of low-level feature descriptors capable of distinguishing between ‘live’ and ‘spoof’ images and videos. The proposed method explores both spatial and temporal information to learn distinctive characteristics between the two classes. Experiments conducted to validate our solution with datasets containing images and videos show results comparable to state-of-the-art approaches.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Face spoofing detection through partial least squares and low-level descriptors
Personal identity verification based on biometrics has received increasing attention since it allows reliable authentication through intrinsic characteristics, such as face, voice, iris, fingerprint, and gait. Particularly, face recognition techniques have been used in a number of applications, such as security surveillance, access control, crime solving, law enforcement, among others. To strengthen the results of verification, biometric systems must be robust against spoofing attempts with photographs or videos, which are two common ways of bypassing a face recognition system. In this paper, we describe an anti-spoofing solution based on a set of low-level feature descriptors capable of distinguishing between ‘live’ and ‘spoof’ images and videos. The proposed method explores both spatial and temporal information to learn distinctive characteristics between the two classes. Experiments conducted to validate our solution with datasets containing images and videos show results comparable to state-of-the-art approaches.