人脸欺骗检测通过偏最小二乘法和低级描述符

W. R. Schwartz, A. Rocha, H. Pedrini
{"title":"人脸欺骗检测通过偏最小二乘法和低级描述符","authors":"W. R. Schwartz, A. Rocha, H. Pedrini","doi":"10.1109/IJCB.2011.6117592","DOIUrl":null,"url":null,"abstract":"Personal identity verification based on biometrics has received increasing attention since it allows reliable authentication through intrinsic characteristics, such as face, voice, iris, fingerprint, and gait. Particularly, face recognition techniques have been used in a number of applications, such as security surveillance, access control, crime solving, law enforcement, among others. To strengthen the results of verification, biometric systems must be robust against spoofing attempts with photographs or videos, which are two common ways of bypassing a face recognition system. In this paper, we describe an anti-spoofing solution based on a set of low-level feature descriptors capable of distinguishing between ‘live’ and ‘spoof’ images and videos. The proposed method explores both spatial and temporal information to learn distinctive characteristics between the two classes. Experiments conducted to validate our solution with datasets containing images and videos show results comparable to state-of-the-art approaches.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Face spoofing detection through partial least squares and low-level descriptors\",\"authors\":\"W. R. Schwartz, A. Rocha, H. Pedrini\",\"doi\":\"10.1109/IJCB.2011.6117592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal identity verification based on biometrics has received increasing attention since it allows reliable authentication through intrinsic characteristics, such as face, voice, iris, fingerprint, and gait. Particularly, face recognition techniques have been used in a number of applications, such as security surveillance, access control, crime solving, law enforcement, among others. To strengthen the results of verification, biometric systems must be robust against spoofing attempts with photographs or videos, which are two common ways of bypassing a face recognition system. In this paper, we describe an anti-spoofing solution based on a set of low-level feature descriptors capable of distinguishing between ‘live’ and ‘spoof’ images and videos. The proposed method explores both spatial and temporal information to learn distinctive characteristics between the two classes. Experiments conducted to validate our solution with datasets containing images and videos show results comparable to state-of-the-art approaches.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

以生物识别技术为基础的个人身份验证,可以通过面部、声音、虹膜、指纹、步态等内在特征进行可靠的身份验证,因此受到了越来越多的关注。特别是,人脸识别技术已被用于许多应用,如安全监视、访问控制、犯罪解决、执法等。为了加强验证结果,生物识别系统必须对照片或视频的欺骗尝试具有鲁棒性,这是绕过人脸识别系统的两种常见方法。在本文中,我们描述了一种基于一组能够区分“实时”和“欺骗”图像和视频的低级特征描述符的反欺骗解决方案。该方法同时探索空间和时间信息,以了解两个类别之间的显著特征。用包含图像和视频的数据集验证我们的解决方案的实验显示出与最先进的方法相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face spoofing detection through partial least squares and low-level descriptors
Personal identity verification based on biometrics has received increasing attention since it allows reliable authentication through intrinsic characteristics, such as face, voice, iris, fingerprint, and gait. Particularly, face recognition techniques have been used in a number of applications, such as security surveillance, access control, crime solving, law enforcement, among others. To strengthen the results of verification, biometric systems must be robust against spoofing attempts with photographs or videos, which are two common ways of bypassing a face recognition system. In this paper, we describe an anti-spoofing solution based on a set of low-level feature descriptors capable of distinguishing between ‘live’ and ‘spoof’ images and videos. The proposed method explores both spatial and temporal information to learn distinctive characteristics between the two classes. Experiments conducted to validate our solution with datasets containing images and videos show results comparable to state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-resolution face recognition via Simultaneous Discriminant Analysis Fundamental statistics of relatively permanent pigmented or vascular skin marks for criminal and victim identification Biometric recognition of newborns: Identification using palmprints Combination of multiple samples utilizing identification model in biometric systems Face and eye detection on hard datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1