{"title":"三维受限微腔面发射激光器的矢量有限元分析","authors":"M. J. Noble, J. Lott, J. Loehr, P. Sotirelis","doi":"10.1109/LEOSST.1997.619108","DOIUrl":null,"url":null,"abstract":"This new finite element method model is expected to be valuable for the design of microcavity devices. It can be used to optimize optical mode control by examining changes of size, shape, number, and location of native oxide layers. It may also be combined with semiconductor gain calculations to determine the higher-order mode suppression level for various microcavity surface emitting laser designs. Finally, it may be used to analyze VCSEL lasing and spontaneous emission near-field structure. This information is of considerable importance in the design of optical interconnect and communication systems.","PeriodicalId":344325,"journal":{"name":"1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of three dimensionally confined microcavity surface emitting lasers using vector finite elements\",\"authors\":\"M. J. Noble, J. Lott, J. Loehr, P. Sotirelis\",\"doi\":\"10.1109/LEOSST.1997.619108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This new finite element method model is expected to be valuable for the design of microcavity devices. It can be used to optimize optical mode control by examining changes of size, shape, number, and location of native oxide layers. It may also be combined with semiconductor gain calculations to determine the higher-order mode suppression level for various microcavity surface emitting laser designs. Finally, it may be used to analyze VCSEL lasing and spontaneous emission near-field structure. This information is of considerable importance in the design of optical interconnect and communication systems.\",\"PeriodicalId\":344325,\"journal\":{\"name\":\"1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LEOSST.1997.619108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 Digest of the IEEE/LEOS Summer Topical Meeting: Vertical-Cavity Lasers/Technologies for a Global Information Infrastructure/WDM Components Technology/Advanced Semiconductor Lasers and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LEOSST.1997.619108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of three dimensionally confined microcavity surface emitting lasers using vector finite elements
This new finite element method model is expected to be valuable for the design of microcavity devices. It can be used to optimize optical mode control by examining changes of size, shape, number, and location of native oxide layers. It may also be combined with semiconductor gain calculations to determine the higher-order mode suppression level for various microcavity surface emitting laser designs. Finally, it may be used to analyze VCSEL lasing and spontaneous emission near-field structure. This information is of considerable importance in the design of optical interconnect and communication systems.