Luis Martí , Nayat Sanchez-Pi , José Manuel Molina López , Ana Cristina Bicharra Garcia
{"title":"结合支持向量机和分割算法进行异常检测:石油行业对比研究","authors":"Luis Martí , Nayat Sanchez-Pi , José Manuel Molina López , Ana Cristina Bicharra Garcia","doi":"10.1016/j.jal.2016.11.015","DOIUrl":null,"url":null,"abstract":"<div><p>Anomaly detection has to do with finding patterns in data that do not conform to an expected behavior. It has recently attracted the attention of the research community because of its real-world application. The correct detection unusual events empower the decision maker with the capacity to act on the system in order to correctly avoid, correct, or react to the situations associated with them. Petroleum industry is one of such real-world application scenarios. In particular, heavy extraction machines for pumping and generation operations like turbomachines are intensively monitored by hundreds of sensors each that send measurements with a high frequency for damage prevention. For dealing with this and with the lack of labeled data, in this paper we describe a combination of a fast and high quality segmentation algorithm with a one-class support vector machine approach for efficient anomaly detection in turbomachines. As a result we perform empirical studies comparing our approach to another using Kalman filters in a real-life application related to oil platform turbomachinery anomaly detection.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"24 ","pages":"Pages 71-84"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.015","citationCount":"7","resultStr":"{\"title\":\"On the combination of support vector machines and segmentation algorithms for anomaly detection: A petroleum industry comparative study\",\"authors\":\"Luis Martí , Nayat Sanchez-Pi , José Manuel Molina López , Ana Cristina Bicharra Garcia\",\"doi\":\"10.1016/j.jal.2016.11.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Anomaly detection has to do with finding patterns in data that do not conform to an expected behavior. It has recently attracted the attention of the research community because of its real-world application. The correct detection unusual events empower the decision maker with the capacity to act on the system in order to correctly avoid, correct, or react to the situations associated with them. Petroleum industry is one of such real-world application scenarios. In particular, heavy extraction machines for pumping and generation operations like turbomachines are intensively monitored by hundreds of sensors each that send measurements with a high frequency for damage prevention. For dealing with this and with the lack of labeled data, in this paper we describe a combination of a fast and high quality segmentation algorithm with a one-class support vector machine approach for efficient anomaly detection in turbomachines. As a result we perform empirical studies comparing our approach to another using Kalman filters in a real-life application related to oil platform turbomachinery anomaly detection.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"24 \",\"pages\":\"Pages 71-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.015\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868316300696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316300696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
On the combination of support vector machines and segmentation algorithms for anomaly detection: A petroleum industry comparative study
Anomaly detection has to do with finding patterns in data that do not conform to an expected behavior. It has recently attracted the attention of the research community because of its real-world application. The correct detection unusual events empower the decision maker with the capacity to act on the system in order to correctly avoid, correct, or react to the situations associated with them. Petroleum industry is one of such real-world application scenarios. In particular, heavy extraction machines for pumping and generation operations like turbomachines are intensively monitored by hundreds of sensors each that send measurements with a high frequency for damage prevention. For dealing with this and with the lack of labeled data, in this paper we describe a combination of a fast and high quality segmentation algorithm with a one-class support vector machine approach for efficient anomaly detection in turbomachines. As a result we perform empirical studies comparing our approach to another using Kalman filters in a real-life application related to oil platform turbomachinery anomaly detection.