Alaettin Uçan, Behzad Naderalvojoud, E. Sezer, H. Sever
{"title":"面向新语言的SentiWordNet:自动翻译方法","authors":"Alaettin Uçan, Behzad Naderalvojoud, E. Sezer, H. Sever","doi":"10.1109/SITIS.2016.57","DOIUrl":null,"url":null,"abstract":"This paper proposes an automatic translation approach to create a sentiment lexicon for a new language from available English resources. In this approach, an automatic mapping is generated from a sense-level resource to a wordlevel by applying a triple unification process. This process produces a single polarity score for each term by incorporating all sense polarities. The major idea is to deal with the sense ambiguity during the lexicon transfer and provide a general sentiment lexicon for languages like Turkish which do not have a freely available machine-readable dictionary. On the other hand, the translation quality is critical in the lexicon transfer due to the ambiguity problem. Thus, this paper also proposes a multiple bilingual translation approach to find the most appropriate equivalents for the source language terms. In this approach, three parallel, series and hybrid algorithms are used to integrate the translation results. Finally, three lexicons are achieved for the target language with different sizes. The performance of three lexicons is evaluated in the lexicon-based sentiment classification task and compared with the results achieved by the supervised approach. According to experimental results, the proposed approach can produce reliable sentiment lexicons for the target language.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"SentiWordNet for New Language: Automatic Translation Approach\",\"authors\":\"Alaettin Uçan, Behzad Naderalvojoud, E. Sezer, H. Sever\",\"doi\":\"10.1109/SITIS.2016.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an automatic translation approach to create a sentiment lexicon for a new language from available English resources. In this approach, an automatic mapping is generated from a sense-level resource to a wordlevel by applying a triple unification process. This process produces a single polarity score for each term by incorporating all sense polarities. The major idea is to deal with the sense ambiguity during the lexicon transfer and provide a general sentiment lexicon for languages like Turkish which do not have a freely available machine-readable dictionary. On the other hand, the translation quality is critical in the lexicon transfer due to the ambiguity problem. Thus, this paper also proposes a multiple bilingual translation approach to find the most appropriate equivalents for the source language terms. In this approach, three parallel, series and hybrid algorithms are used to integrate the translation results. Finally, three lexicons are achieved for the target language with different sizes. The performance of three lexicons is evaluated in the lexicon-based sentiment classification task and compared with the results achieved by the supervised approach. According to experimental results, the proposed approach can produce reliable sentiment lexicons for the target language.\",\"PeriodicalId\":403704,\"journal\":{\"name\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2016.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SentiWordNet for New Language: Automatic Translation Approach
This paper proposes an automatic translation approach to create a sentiment lexicon for a new language from available English resources. In this approach, an automatic mapping is generated from a sense-level resource to a wordlevel by applying a triple unification process. This process produces a single polarity score for each term by incorporating all sense polarities. The major idea is to deal with the sense ambiguity during the lexicon transfer and provide a general sentiment lexicon for languages like Turkish which do not have a freely available machine-readable dictionary. On the other hand, the translation quality is critical in the lexicon transfer due to the ambiguity problem. Thus, this paper also proposes a multiple bilingual translation approach to find the most appropriate equivalents for the source language terms. In this approach, three parallel, series and hybrid algorithms are used to integrate the translation results. Finally, three lexicons are achieved for the target language with different sizes. The performance of three lexicons is evaluated in the lexicon-based sentiment classification task and compared with the results achieved by the supervised approach. According to experimental results, the proposed approach can produce reliable sentiment lexicons for the target language.