基于mfp的纳米结构声子输运蒙特卡罗方法

Jincai Yu, W. Ye, Baoling Huang, D. Villaroman, Qi Wang
{"title":"基于mfp的纳米结构声子输运蒙特卡罗方法","authors":"Jincai Yu, W. Ye, Baoling Huang, D. Villaroman, Qi Wang","doi":"10.1115/mnhmt2019-4136","DOIUrl":null,"url":null,"abstract":"\n Phonon Monte Carlo method is a popular method for modeling particle dominated phonon transport. Its accuracy critically depends on its inputs such as relaxation time and dispersion, which are difficult to be obtained accurately and efficiently. As a result, empirical models with many fitting parameters are often used. In addition, for large-scale 3D nanostructured systems, the required computational cost is very high. In this article, we present an efficient and highly parallelizable phonon Monte Carlo method using MFP-cumulative thermal conductivity as the only input. The efficiency is enhanced by incorporating the recently proposed variance-reduction method, and the accuracy is ensured because the MFP-based cumulative thermal conductivity can be accurately obtained by experiments or first principles calculation. Moreover, with the MEP-cumulative thermal conductivity as the input, optical phonons can be naturally included in the calculation, which further improves the accuracy.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MFP-Based Monte Carlo Method for Nanostructure Phonon Transport\",\"authors\":\"Jincai Yu, W. Ye, Baoling Huang, D. Villaroman, Qi Wang\",\"doi\":\"10.1115/mnhmt2019-4136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Phonon Monte Carlo method is a popular method for modeling particle dominated phonon transport. Its accuracy critically depends on its inputs such as relaxation time and dispersion, which are difficult to be obtained accurately and efficiently. As a result, empirical models with many fitting parameters are often used. In addition, for large-scale 3D nanostructured systems, the required computational cost is very high. In this article, we present an efficient and highly parallelizable phonon Monte Carlo method using MFP-cumulative thermal conductivity as the only input. The efficiency is enhanced by incorporating the recently proposed variance-reduction method, and the accuracy is ensured because the MFP-based cumulative thermal conductivity can be accurately obtained by experiments or first principles calculation. Moreover, with the MEP-cumulative thermal conductivity as the input, optical phonons can be naturally included in the calculation, which further improves the accuracy.\",\"PeriodicalId\":331854,\"journal\":{\"name\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/mnhmt2019-4136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-4136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

声子蒙特卡罗方法是模拟粒子主导声子输运的常用方法。它的精度严重依赖于它的输入,如弛豫时间和色散,很难准确有效地获得。因此,通常使用具有许多拟合参数的经验模型。此外,对于大规模的三维纳米结构系统,所需的计算成本非常高。在本文中,我们提出了一种高效且高度并行化的声子蒙特卡罗方法,使用mfp累积热导率作为唯一输入。结合最近提出的方差缩减方法,提高了效率,并保证了精度,因为基于mfp的累积导热系数可以通过实验或第一性原理计算准确获得。此外,以mep累积热导率作为输入,可以自然地将光学声子纳入计算,进一步提高了精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MFP-Based Monte Carlo Method for Nanostructure Phonon Transport
Phonon Monte Carlo method is a popular method for modeling particle dominated phonon transport. Its accuracy critically depends on its inputs such as relaxation time and dispersion, which are difficult to be obtained accurately and efficiently. As a result, empirical models with many fitting parameters are often used. In addition, for large-scale 3D nanostructured systems, the required computational cost is very high. In this article, we present an efficient and highly parallelizable phonon Monte Carlo method using MFP-cumulative thermal conductivity as the only input. The efficiency is enhanced by incorporating the recently proposed variance-reduction method, and the accuracy is ensured because the MFP-based cumulative thermal conductivity can be accurately obtained by experiments or first principles calculation. Moreover, with the MEP-cumulative thermal conductivity as the input, optical phonons can be naturally included in the calculation, which further improves the accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Start-Up Performance of Pulsating Heat Pipe With Communicating Pipe at Different Inclination Angles Laser Ablation of Crystalline Material With and Without Water on Material Surface A Method for Measuring Thermal Conductivity of Low-Dimensional Materials Based on DC Heating Experiment of Enhanced Pool Boiling Heat Transfer on Coupling Effects of Nano-Structure and Synergistic Micro-Channel Experimental and Theoretical Study on the Effect of Pressure and Surface Roughness on Thermal Contact Resistance With LMA As TIM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1