基于粒子滤波和CAZAC序列的目标跟踪

I. Kyriakides, Ioannis Konstantinidis, D. Morrell, J. Benedetto, A. Papandreou-Suppappola
{"title":"基于粒子滤波和CAZAC序列的目标跟踪","authors":"I. Kyriakides, Ioannis Konstantinidis, D. Morrell, J. Benedetto, A. Papandreou-Suppappola","doi":"10.1109/WDDC.2007.4339445","DOIUrl":null,"url":null,"abstract":"When tracking targets in radar, the selection of the transmitted waveform and the method of processing the return signal are two of the design aspects that affect measurement accuracy. Increased measurement accuracy results in enhanced tracking performance. In this paper, we apply sequential Monte Carlo methods to propose matched filtering operations in the delay-Doppler space where a target is expected to exist. Moreover, in the case of thresholding the measurements, these methods are used to form resolution cells that have the shape of the probability of detection contour. These methods offer an advantage over traditional radar tracking methods that form tessellating resolution cells to approximate the probability of detection contours, and exhaustively perform matched filtering operations over the entire delay-Doppler space. With the use of a Bjorck constant amplitude zero-autocorrelation (CAZAC) sequence, a high resolution measurement is attained and the use of thresholding is avoided. This is an advantage over commonly used waveforms such as linear frequency modulated chirps (LFMs). We examine the properties of Bjorck CAZACs and demonstrate improved tracking performance over LFMs in a single target tracking scenario.","PeriodicalId":142822,"journal":{"name":"2007 International Waveform Diversity and Design Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Target tracking using particle filtering and CAZAC sequences\",\"authors\":\"I. Kyriakides, Ioannis Konstantinidis, D. Morrell, J. Benedetto, A. Papandreou-Suppappola\",\"doi\":\"10.1109/WDDC.2007.4339445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When tracking targets in radar, the selection of the transmitted waveform and the method of processing the return signal are two of the design aspects that affect measurement accuracy. Increased measurement accuracy results in enhanced tracking performance. In this paper, we apply sequential Monte Carlo methods to propose matched filtering operations in the delay-Doppler space where a target is expected to exist. Moreover, in the case of thresholding the measurements, these methods are used to form resolution cells that have the shape of the probability of detection contour. These methods offer an advantage over traditional radar tracking methods that form tessellating resolution cells to approximate the probability of detection contours, and exhaustively perform matched filtering operations over the entire delay-Doppler space. With the use of a Bjorck constant amplitude zero-autocorrelation (CAZAC) sequence, a high resolution measurement is attained and the use of thresholding is avoided. This is an advantage over commonly used waveforms such as linear frequency modulated chirps (LFMs). We examine the properties of Bjorck CAZACs and demonstrate improved tracking performance over LFMs in a single target tracking scenario.\",\"PeriodicalId\":142822,\"journal\":{\"name\":\"2007 International Waveform Diversity and Design Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Waveform Diversity and Design Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WDDC.2007.4339445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Waveform Diversity and Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WDDC.2007.4339445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在雷达跟踪目标时,发射波形的选择和回波信号的处理方法是影响测量精度的两个设计方面。提高了测量精度,从而提高了跟踪性能。在本文中,我们应用时序蒙特卡罗方法在期望目标存在的延迟-多普勒空间中提出匹配滤波操作。此外,在阈值测量的情况下,这些方法被用来形成具有检测轮廓概率形状的分辨率单元。与传统的雷达跟踪方法相比,这些方法具有优势,传统的雷达跟踪方法形成细分分辨率单元来近似检测轮廓的概率,并在整个延迟多普勒空间内详尽地执行匹配滤波操作。采用比约克等幅零自相关(CAZAC)序列,实现了高分辨率的测量,避免了阈值分割的使用。这比常用的波形(如线性调频啁啾(lfm))有优势。我们研究了Bjorck CAZACs的特性,并在单个目标跟踪场景中演示了比LFMs更好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Target tracking using particle filtering and CAZAC sequences
When tracking targets in radar, the selection of the transmitted waveform and the method of processing the return signal are two of the design aspects that affect measurement accuracy. Increased measurement accuracy results in enhanced tracking performance. In this paper, we apply sequential Monte Carlo methods to propose matched filtering operations in the delay-Doppler space where a target is expected to exist. Moreover, in the case of thresholding the measurements, these methods are used to form resolution cells that have the shape of the probability of detection contour. These methods offer an advantage over traditional radar tracking methods that form tessellating resolution cells to approximate the probability of detection contours, and exhaustively perform matched filtering operations over the entire delay-Doppler space. With the use of a Bjorck constant amplitude zero-autocorrelation (CAZAC) sequence, a high resolution measurement is attained and the use of thresholding is avoided. This is an advantage over commonly used waveforms such as linear frequency modulated chirps (LFMs). We examine the properties of Bjorck CAZACs and demonstrate improved tracking performance over LFMs in a single target tracking scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed/embedded sub-surface sensors for imaging buried objects with reduced mutual coupling and suppressed electromagnetic emissions Discrete Suppression with ΣΔ-STAP Model order estimation for adaptive radar clutter cancellation Adaptive PN code acquisition using automatic censoring for DS-CDMA communication. Knowledge base technologies for waveform diversity and electromagnetic compatibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1